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A great challenge in understanding biological complexity in the

post-genome era is to reconstruct the regulatory networks

governing the patterns of gene expression. In the past few

years, the rapid accumulation of genomic sequence and

functional data has led to the development of computational

approaches to systematically dissect transcriptional regulatory

networks. Effective algorithms have been developed to predict

cis-regulatory elements in a genome, to identify the target

genes of transcription factors, to infer the conditions under

which each transcription factor is either activated or

deactivated, and to analyze combinatorial regulation by

multiple transcription factors. Genomic approaches have

profoundly changed the way biologists investigate

transcriptional regulation, and global pictures of the

transcription networks for several model organisms are

beginning to emerge.
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Abbreviations
ChIP chromatin immunoprecipitation

TF transcription factor

TFPE TF perturbation experiment

Introduction
A great challenge in the post-genome era is to understand

gene regulation on a genomic scale. Organisms devote

a significant fraction of their DNA to encoding cis-reg-

ulatory programs that both control and coordinate gene

expression at the transcript level. The outputs of the

cis-regulatory program depend on the cellular state and

extra-cellular inputs. Typically, an external stimulus acti-

vates a signal transduction pathway, which leads to the

modification of the activities of several transcription

factors. These transcription factors then target a subset

of genes in the genome, effecting regulation that is often

combinatorial in nature. Figure 1 depicts a simplified

picture of transcription regulation at a genomic scale.

Dissecting the complexities of transcriptional networks

is essential for understanding development, cellular

responses to environmental and genetic perturbations,

and the molecular basis of many diseases.

To form a comprehensive picture of the transcription

networks, one needs to address the following challenges:

first, identification of cis-regulatory elements in the gen-

ome; second, accurate identification of the direct reg-

ulatory targets of transcription factors (TFs); third,

identification of the cellular and environmental context

in which these TFs are either activated or deactivated;

and fourth, analysis of how gene expression is tailored to

different conditions through combinatorial control by

multiple TFs. Here we review recent progresses in

developing computational approaches to meet these

challenges, driven by the rapid accumulation of sequence

and functional genomics data.

Identifying cis-regulatory elements in a
genome
Until relatively recently, the identification of cis-regula-

tory elements in a genome has been difficult because

these elements are typically short, degenerate, and obey

few rules. The availability of large-scale gene expression

data from DNA microarrays, complete genome sequences

of many species for comparative analysis, and systematic

ChIP–chip — chromatin immunoprecipitation followed

by hybridization to DNA chip — experiments have led to

the development of a large number of computational

algorithms to identify cis-regulatory elements systemati-

cally. These algorithms generally fall into the following

categories.

Combining sequence and expression data

A common approach for combining sequence and expres-

sion data is to first define groups of co-regulated genes on

the basis of similarity in their expression profiles using

clustering algorithms [1,2], then to search for enriched

sequence patterns in the upstream regulatory regions of

genes in a group. The underlying assumption is that

genes with similar expression profiles are likely to be

regulated by the same TFs. The search algorithms range

from enumerating over-represented substrings or regular

expression patterns [3–5] to local multiple sequence

alignments [6–12]. (Some of these algorithms have been

discussed in previous reviews [13,14].)
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The clustering-based approach has been quite successful

in identifying regulatory elements but has its limitations.

Clustering is far from an exact and objective process.

Genes sharing the same motif may or may not cluster

together depending on the expression measurement con-

ditions. Partitioning genes into disjointed clusters may

cause loss of information because groups of genes defined

by a common motif may not be mutually exclusive, as a

result of combinatorial regulation. In addition, clustering is

not applicable in situations where only a single microarray

measurement is available (e.g. a mutant/wild type compar-

ison, or a ChIP–chip measurement). Several algorithms

have been developed to extract regulatory elements with-

out the need for clustering. Bussemaker, Li and Siggia

developed the REDUCE (Regulatory Element Detection

Using Correlation with Expression) algorithm that can

identify combinatorial regulatory elements from a single

microarray measurement, based on a linear regression

model in which regulatory motifs contribute additively

to the log of gene expression [15]. Liu et al. developed the

MDscan algorithm which combines gene expression data

with local multiple sequence alignment to identify TF

binding sites from ChIP–chip data [16�]. Recently, Conlon

et al. generalized the linear regression scheme used by the

REDUCE algorithm to evaluate motifs described by

position-specific weight matrices (which specify the prob-

ability of occurrence of the 4 nucleotides at each single

base position) generated from the MDscan algorithm [17].

Single genome statistical analysis

Regulatory elements in a genome may be found on the

basis of intra-genome statistics [18–20,21�]. A TF, in

general, regulates more than one target and its binding

site appears in many places in the genome — thus the

binding site motif will be over-represented. Algorithms

have been developed to identify putative regulatory ele-

ments using genome sequence information only. These

algorithms search for over-represented motifs on the basis

of certain ‘background’ models. One example is the Moby

Dick algorithm developed by Bussemaker, Li and Siggia.

This algorithm treats the genome as if it were a scrambled

novel with ‘words’ representing putative regulatory ele-

ments. The algorithm reconstructs the lexicon by finding

recurrent words using a probabilistic segmentation model

[19,20]. When supplemented by specific knowledge of

binding-site motifs, searches for over-represented motifs

on the basis of genome-wide statistics can be very effec-

tive in finding regulatory elements. For example, using

the observation that many DNA-binding proteins in bac-

teria bind to a bipartite motif with two short segments

more conserved than the intervening region, Li et al.
developed an algorithm that successfully identified about

one-third of known regulatory motifs in the Escherichia
coli genome and predicted many new ones [21�].

Comparative genome analysis

The availability of completely sequenced genomes of

closely related species provides a great opportunity for

delineating conserved regulatory elements. These ele-

ments are more conserved than general noncoding

sequences because of functional constraints. Choosing

species separated by appropriate evolutionary distances is

essential for the success of this approach. The species

have to be close enough to achieve sensible alignment of

noncoding sequences, but sufficiently diverged such that

conserved regulatory elements will stand out from the

background.

Comparative genome analysis of regulatory sequences

involves the identification of orthologous noncoding

regions across species, followed by the search for con-

served DNA segments. Some publicly available data

sources and analysis tools are reviewed in [22]. The com-

putational algorithms range from BLAST-like [23–26], to

Hidden Markov model based [27,28], to local multiple

sequence alignment [29]. Algorithms have also been

developed where the statistical significance of alignment

is evaluated under an appropriate background mutation

model that takes into account the relatedness of the

species [30]. The resolution at which the regulatory

elements can be delineated depends on the type of

sequence data available. Pair-wise alignment usually

identifies highly conserved segments that are much

longer (hundreds to thousands of bases) than the typical

length of a TF binding site. This approach has been used

by various groups, for example by Loots et al. [31] to

identify regulatory sequences for interleukins in the

human genome by comparison to mouse; by Waterston

et al. [32�] to systematically analyze conserved noncoding

Figure 1
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A diagram of transcription networks of a cell. The transcriptional

response of the cell is determined by the cellular state and external

input, as represented by the conditions t1, t2 (etc.) Elements f1, f2 (etc.)

are transcription factors that are activated under specific conditions.

Typically, transcription factors work together in a combinatorial fashion

to control the expressions of genes g1, g2 (etc.).
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regions between human and mouse and to estimate the

fraction of noncoding regions under selection; and by

Kent and Zahler [28] to compare Caenorhabditis elegans
and C. briggisae. When multiple species data are available,

finer resolution can be achieved. For example, McCue

et al. [29] used Gibbs sampler to identify regulatory motifs

in the orthologous noncoding regions from several bacter-

ial species [29]. The power of comparing several closely

related species with appropriate evolutionary distance is

clearly demonstrated by the recent sequencing and com-

parative analysis of several yeast species [33�,34�], where

many known regulatory elements were identified by sim-

ply searching for bipartite patterns or oligonucleoties that

are more conserved than expected by chance. There are

also recent works where targeted genomic regions in

multiple mammalian (e.g. [35]) and vertebrate (e.g. [36])

species were sequenced and novel regulatory sequences

identified by comparative analysis. Although comparative

analysis is quite successful, it is known that many regula-

tory elements lie outside the conserved regions, and thus

will escape detection (E Emberly, N Rajewsky, E Siggia,

personal communication).

Predicting cis-regulatory modules on the basis of

clustering of binding sites

Identification of regulatory elements in metazoans (e.g.

fly, mouse and human) is more difficult than in unicellular

organisms (e.g. yeast). In contrast to yeast, where cis-
regulatory elements are typically located a few hundred

base pairs away from the translation start site, cis-
regulatory elements in metazoans can be tens or even

hundreds of kilobases away from the genes they regulate.

In addition, the binding sites are, in general, not as sharply

defined as in yeast. Thus, false positives occur frequently.

Recently, notable progress has been made on the basis of

the following simple observation. Analysis of the tran-

scriptional program governing early fly embryo develop-

ment revealed that the cis-regulatory elements organize

into well separable modules, each defining a specific

aspect of the spatio-temporal pattern [37,38]. Such a

modular structure has also been revealed, for instance,

in the studies of sea urchin development [39–41]. In an

early study, Fickett and Wasserman [42] used a combina-

tion of muscle-specific TF binding sites to search for

muscle-specific genes in the human genome. Recently,

several groups [43–45,46�] developed algorithms to

search for cis-regulatory modules responsible for early

fly embryo patterning. Most of the algorithms are based

on counting the number of matches of a certain minimum

similarity to known motifs in a sequence window.

Rajewsky et al. [46�] used known motif profiles and a

statistical segmentation algorithm (discussed in [19,20])

to compute the likelihood ratio of a given sequence being

‘module’ versus ‘background’. This algorithm circum-

vents the arbitrary cut-off on motif matches and poten-

tially permits multiple weak motifs to contribute. Frith

et al. [47,48] have developed an algorithm based on

hidden Markov model to analyze clusters in the human

genome and have made the tool available free online.

Identifying target genes of TFs
It remains a significant challenge to link predicted cis-
regulatory elements to the TFs that recognize them.

Typically, the potential functions of the predicted ele-

ments are evaluated by comparison with known TF

binding sites and targets, or by functional analysis of

the genes that contain the element. This approach was

used, for example, by Kellis et al. [33�] and Cliften et al.
[34�] to assign putative functions for cis-regulatory ele-

ments identified by comparative analyses.

One exciting development in the past few years has been

the invention [49,50] and large-scale application [51�] of

the ChIP–chip technology to identify the direct targets of

a TF. Recently Lee et al. [51�] applied the technology

systematically to yeast and published a dataset for 106

TFs, the most comprehensive dataset for TF binding in

the yeast genome to date. The ChIP–chip technology

is now used to study TF binding in mammalian cells

[52–54]. Using DNA microarray containing the proximal

promoters of �5,000 well annotated genes, Li et al. sys-

tematically identified the targets of c-Myc in Burkitt’s

lymphoma cells [53]. The amount of ChIP–chip data are

rapidly accumulating as various laboratories are using

similar approaches to analyze TFs under various condi-

tions. However, these data cannot be used blindly to

define the target genes of a TF. It is important to have

the ChIP–chip experiment done under the right condi-

tions where the TF is activated. Apart from identifying

target genes, it is also non-trivial to accurately locate the

binding site of a TF, because ChIP–chip data only

allows the identification of TF binding loci with a

resolution of �1 kb. One approach is to first identify a

set of potential target genes on the basis of ChIP–chip

data and then to search for common sequence patterns in

their promoters using local sequence alignment algo-

rithms [51�]. Other algorithms have been developed to

identify binding sites ([16�]; W Wang et al., unpublished

data) and target genes of a TF (W Wang et al., unpub-

lished data) more effectively by combining ChIP–chip

data and sequence information.

ChIP–chip experiments map the genomic location of a

TF’s binding site, but do not provide direct evidence for

the regulation of the genes bound by the TF. A functional

assay is a TF perturbation experiment (TFPE). In a

TFPE, the expression profile of the wild type is compared

to a mutant in which the TF has been perturbed (e.g.

either deleted or overexpressed) under conditions where

the TF plays a regulatory role. Identification of the

binding sites and the direct targets of a TF using TFPE

has received less attention because of concerns over the

difficulty of distinguishing direct and indirect targets.

However, Wang et al. recently demonstrated that the
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binding site and target genes of a TF can be identified

with high specificity by combining promoter sequence

analysis with TFPE data ([55�]; W Wang et al., unpub-

lished data). Their work suggests that TFPEs for all the

TFs in the genome may be a comprehensive and efficient

way to map transcriptional networks on a genomic scale.

Identifying the cellular and environmental
context in which a transcription factor is
active
Although significant progress has been made in identifying

cis-regulatory elements and mapping the links from TFs to

their targets (the bottom portion of the network diagram in

Figure 1), the development of tools to map the links from

conditions to transcription factors (the top portion of the

network) is still in its infancy. Identification of the cellular

and environmental contexts in which each TF is either

activated or deactivated is crucial for translating the static

information encoded in the DNA sequence into an under-

standing of the dynamic regulatory network. At present,

there is no high-throughput method to measure the activ-

ities of all the TFs in a genome directly. mRNA expression

level, for example, is insufficient because the activity of

TFs is often regulated by post-translational modifications.

Several computational approaches have been developed to

infer the activities of TFs from microarray expression data

indirectly. Wang et al. [55�] have developed an inference

scheme on the basis of ‘local similarity’ between the

expression data from a TFPE experiment and that from

a condition of interest, under the assumption that if the TF

is activated under that condition, genes regulated by the

TF should have responses similar to those in the TFPE.

Barkai et al. [56] developed an algorithm to identify groups

of genes that are coherently expressed under a subset of

conditions. If genes in a group are known to be regulated

by a TF, then the TF can be inferred to be active under

those conditions. Algorithms have also been developed to

search for TFs regulating a gene cluster on the basis of

similarity between the expression profile of a TF and that

of the cluster [57]. Segal et al. used a similar idea to infer

potential condition specific regulators [58�]. This approach

is limited, for instance by the fact that many TFs are not

regulated at the transcript level, and by the difficulty of

inferring causality from correlations.

Combinatorial regulation
Combinatorial regulation is known to be an essential

feature of transcriptional regulation. Examples include

combinatorial control for spatial temporal patterning dur-

ing development [37–41], and the stress response in yeast

[59]. An understanding of combinatorial regulation at a

genomic scale is a major challenge, as the number of

possible combinations is huge and the cooperation

between TFs is context-dependent. With the rapid accu-

mulation of data on gene expression, TFs, and their target

genes, it is possible now to systematically analyze genes

regulated by multiple TFs and to relate the complex

transcriptional response of a gene to the combinations of

TF binding sites. We expect that this will become one of

the focuses in computational analysis of transcriptional

regulation in the next few years.

One straightforward approach to identifying combinator-

ial regulation is to examine the overlaps between the

target genes of different TFs ([51�]; W Wang et al.,
unpublished data). This approach can be very powerful

if TFPE or ChIP–chip data under the right activation

condition is available for TFs involved in the regulation.

Using ChIP–chip data in conjunction with expression

data, Lee et al. identified genes bound by a common

set of regulators as well as co-expressed throughout the

cell cycle, and built a model of a transcriptional network

for cell-cycle regulation [51�]. Wang et al. integrated

TFPE, ChIP–chip and gene expression data to derive

a mechanistic model for combinatorial regulation during

sporulation (W Wang et al., unpublished data). In a

different approach, Pilpel et al. [60] screened for pairs

of regulatory motifs which may function together on the

basis of the assumption that genes sharing both motifs

should be more tightly co-regulated. Segal et al. devel-

oped a scheme to infer a binary decision tree suggesting

potential combinatorial regulation [58�]. Taking advan-

tage of multiple yeast species sequence data, Chiang et al.
[61] searched for potential combinatorial motifs by enu-

merating pairs of hexameric sequences that are jointly

conserved and exhibit non-random spacing.

The context-dependent nature of combinatorial regulation

poses a great challenge for reconstructing transcription

networks. Because a TF can work together with different

TFs to regulate different sets of genes depending on the

conditions, context-dependent methods such as TFPE or

ChIP–chip experiments (TF binding is also condition-

dependent) are essential. On the other hand, because

enumerating all different contexts is a daunting task, one

needs to develop computational tools to assemble all the

partial information into an integrated picture of the net-

work. Context-independent approaches, such as those

identifying all TF-binding sites and combinations of sites

in the genomeon the basisof sequence analysis only,will be

indispensable for extending knowledge gained in specific

contexts and for suggesting new contexts to be explored.

Conclusions
In the past few years, the availability of genomic sequence

and functional data has led to the development of com-

putational approaches to dissecting transcription networks

at the system level. For simple model organisms such as

yeast, global pictures of the network are beginning to

emerge. In the future, there will be continuing efforts

to collect increasing amounts of sequence and functional

data and develop better theoretical models and computa-

tional algorithms to obtain a comprehensive picture of the

network, both in uni-cellular and multi-cellular organisms.
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We believe one step beyond reconstructing the network is

to have a mechanistic understanding of how the network

performs its regulatory function. In the long run, analyzing

transcriptional networks by combining bioinformatic anal-

ysis with physical modeling is likely to yield insights into

the basic constraints and underlying principles for how the

transcription network and the cis-regulatory system of a

genome is designed.
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