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Decomposing transcriptional regulatory networks into functional
modules and determining logical relations between them is the
first step toward understanding transcriptional regulation at the
system level. Modules based on analysis of genome-scale data can
serve as the basis for inferring combinatorial regulation and for
building mathematical models to quantitatively describe the be-
havior of the networks. We present here an algorithm called MODEM

to identify target genes of a transcription factor (TF) from a single
expression experiment, based on a joint probabilistic model for
promoter sequence and gene expression data. We show how this
method can facilitate the discovery of specific instances of combi-
natorial regulation and illustrate this for a specific case of tran-
scriptional networks that regulate sporulation in the yeast Sac-
charomyces cerevisiae. Applying this method to analyze two
crucial TFs in sporulation, Ndt80p and Sum1p, we were able to
delineate their overlapping binding sites. We proposed a mecha-
nistic model for the competitive regulation by the two TFs on a
defined subset of sporulation genes. We show that this model
accounts for the temporal control of the ‘‘middle’’ sporulation
genes and suggest a similar regulatory arrangement can be found
in developmental programs in higher organisms.

gene expression � microarray � MODEM

Deciphering regulatory networks is a key step toward under-
standing gene regulation at a genomic scale. Both top-down

and bottom-up approaches have been introduced. The top-down
approach focuses on characterizing topologies of the networks from
genome-wide measurements, such as large-scale surveys of network
arrangements (1, 2), and is very useful in studying the organization
of networks. The complementary bottom-up approach builds
mechanistic models for each individual case, e.g., identifying the
binding sites and target genes of a transcription factor (TF)
(reviewed in ref. 3 and references therein), then specifies the roles
of each TF in the networks, e.g., predicting under which cellular
conditions a TF is activated (3–8). This approach next seeks to
determine higher-order regulatory logic, e.g., how TFs cooperate
with each other, and finally organizes all these pieces into functional
networks. The bottom-up approach aims to explain the molecular
basis of regulatory mechanisms. After a number of solid network
structures are revealed, common regulatory rules are expected to
emerge and, guided by the top-down approach, eventually general
regulatory principles may be discovered.

We present here a bottom-up approach to decipher transcrip-
tional regulatory networks (9), in which a key step is to accurately
identify the binding sites and regulatory targets of transcription
factors systematically. For the convenience of discussion, we use the
term transcription module as an abbreviation for a TF, its binding
sites, and target genes (9) throughout this article. To accurately
reconstruct transcription modules, we have developed a computa-
tional algorithm called MODEM (Module construction using gene
Expression and sequence Motif) based on a probabilistic model that
integrates information from DNA sequences and large-scale gene
expression data. We use ‘‘gene expression’’ broadly to refer to
genome-wide measurements that detect transcriptional programs
of a cell. These include, for example, standard mRNA microarray

experiments, which measure the genomic change of transcript levels
as a result of the activation or deactivation of specific transcription
factors; microarray measurements of the effect of perturbation to
a transcription factor by deletion or overexpression [referred to as
TF perturbation experiments (TFPEs) (9), see below]; or TF
genomic location measurements by chromatin immunoprecipita-
tion followed by DNA microarray analysis (ChIP-chip) (10, 11).
MODEM takes a consensus core motif, promoter sequences, and
gene expression data as inputs. It outputs the probability of being
a target for each gene and a position specific frequency matrix
describing the binding site of the TF involved in the corresponding
experiment. The ability of MODEM to construct transcription mod-
ules from a single expression measurement, which is usually a
combined result of replicates, makes it distinct from other methods
that require a large set of expression experiments (4–8). It allows
the monitoring of the change of targets depending on the context,
and the inference of network structure by integrating information
from multiple sources (such as ChIP-chip and TFPE).

Combinatorial regulation and higher-order regulatory logic can
be revealed by examining overlaps of target genes and binding sites
between transcription modules. Once regulatory relationships are
inferred with high confidence, mathematical models can be built to
quantitatively study the specific regulatory logic. Such quantitative
modeling may provide insight into underlying mechanisms and
design principles, which can be tested by experiment.

We show here an example by inferring a network that regulates
the yeast sporulation. The inferred network structure is consistent
with the temporal observations during sporulation, and several
hypotheses about meiosis are generated. The mechanistic model,
built from transcription modules of two crucial sporulation TFs,
Ndt80p and Sum1p, allows us to delineate the target genes and
binding sites of Ndt80p and Sum1p, which partially overlap, and
reveals the importance of the competitive regulation conveyed by
Ndt80p and Sum1p for the sharp and precise temporal control of
middle sporulation genes. This network structure laid the ground
for further computational modeling and experimental manipula-
tion of the sporulation program.

Methods
The MODEM algorithm constructs a transcription module for a
TF based on a joint probability model describing the promoter
sequence and gene expression data. The inputs to MODEM are as
follows: (i) a single genome-wide microarray measurement re-
lated to a TF, such as ChIP-chip or TFPE; (ii) the core DNA
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motif recognized by the TF, typically six to eight bases long,
either identified by applying the REDUCE algorithm (12) to the
expression data or taken from databases; and (iii) the promoter
sequences for all genes in the genome. The output of the
algorithm is a refined description of the binding sites of the TF
beyond the core motif, which is in the form of a position-specific
frequency matrix (PSFM), and the probability of being a true
target for each gene whose promoter contains the core motif
(with a specified number of mismatches). This probability is then
used to classify genes into target and nontarget categories. The
main goal of MODEM is to accurately identify target genes given
a core motif of a TF binding site; it also refines the input
consensus core motif by outputting a PSFM that describes the
motif beyond the consensus core.

It is well known that a core motif alone does not contain enough
information for identifying target genes of a TF with high sensitivity
and specificity. Many genes in the genome with the core motif in
their promoter regions are not targets, whereas many true targets
have variant forms of the core motif. To distinguish true targets
from false positives, MODEM uses two sources of information: (i)
true targets tend to have additional sequence information in the
flanking region of the core motif, and (ii) true targets have high
ratio changes in TFPEs or ChIP-chip experiments. To obtain
additional information from the flanking sequence, MODEM uses
the core motif to extract matches (with a specified number of
mismatches) and their flanking sequences (called extended motifs).
These extended motifs (typically 20 bp long) and gene expression
ratios are then used as input.

MODEM uses a mixture model to describe the joint probability for
extended motifs and the associated expression ratios. The mixture
model is specified by the following parameters: a prior percentage
of true targets among all extended motifs (the mixing parameter),
a PSFM for the extended motifs belonging to the true targets, a
PSFM for the extended motifs belonging to the background, and
two normal distributions for the expression ratios (logarithm trans-
formed) of the true targets and the nontarget genes, respectively.
The model is similar in spirit to the mixture model used by the MEME
algorithm for motif finding (13) with two important generalizations:
(i) gene expression data are modeled together with the sequence
and (ii) the background sequences are also modeled by a PSFM
because all sequences under consideration contain the core motif,
thus the background sequences are not random.

The parameters in the model are estimated through an iterative
process by using expectation maximization. Probability for each
gene being a true target is calculated thereafter. All genes contain-
ing the core motif are then classified as target or nontarget. The
algorithm works in the following way. At the beginning, all extended
motifs have the same sequence score because there is no additional
information from the flanking sequences, and the algorithm assigns
higher probability of being targets to genes with higher expression
ratio (or lower expression ratio if the motif represses expression).
These genes with higher probability contribute more to the PSFM
of the motif in the next update. The updated PSFM is used in
conjunction with expression ratios to reevaluate the probability of
being a target for each gene. These steps are iterated until conver-
gence. The mathematical details are presented in Supporting Text,
which is published as supporting information on the PNAS web site.

Results
Construction of Transcription Modules from TFPEs. We first con-
structed transcription modules from TFPEs. TFPE experiments
compare gene expression between a wild-type cell in which the TF
of interest functions normally and a perturbed cell in which the TF
is deactivated (or inappropriately activated) by a mutation, typically
a constructed deletion (9). In a TFPE, the target genes of the
perturbed TF should show significant expression changes. Thus, it
is not surprising that the most significant motif identified by
REDUCE (12) in a TFPE is typically the binding site of the corre-

sponding TF. As a result, even if the binding site of a TF is unknown,
MODEM still can construct the module based on the core motif
suggested by REDUCE in a TFPE (9). In a typical TFPE, many
nontarget genes will also change their expression because of
indirect effects. These indirect targets will not be included in the
module because of their lack of motif-matching sequences. About
30 TFPEs (9) are available in the public domain from which we have
constructed the corresponding transcription modules.

Example: The Ndt80p module constructed from a TFPE (ectopic
expression of Ndt80p in vegetative cells) (14) is shown as an
example (Table 1). Ndt80p binds to the MSE site (CRCAAAW)
and up-regulates its target genes in the middle stage of sporulation
(Gene Ontology, www.geneontology.org). REDUCE (12) correctly
identified CACAAAA as the most significant motif in the Ndt80p
TFPE. Ninety-eight genes were predicted to be target genes of
Ndt80p by MODEM with CACAAAA as the core motif (one
mismatch allowed). Using Saccharomyces Genome Database Gene
Ontology Term Finder (http:��db.yeastgenome.org�cgi-bin�SGD�
GO�goTermFinder) (15), we found that 24 of these genes are
annotated to function in sporulation, whereas only 87 genes of the
7,271 annotated genes in the yeast genome are so annotated. This
enrichment of biological process is very significant (chance prob-
ability is 10�24) and consistent with the function of Ndt80p. It is
reasonable to suggest that those member genes with no known
functions are involved in the middle stage of the sporulation based
on the function of the module.

The Ndt80 example also illustrates the power of the MODEM
algorithm in extracting flanking sequence information through the
iterative process (see Methods). Although the initial input core
motif is CACAAAA, MODEM found additional informative bases in
the flanking region, e.g., G is predominant in positions 2 and 4
upstream of the core motif (Table 1 and Fig. 1). These two Gs are
not critical to Ndt80p binding based on in vitro binding assay (E.J.,
C. Chin, I. Herskowitz, and H.L., unpublished data) but neverthe-
less play an important role in combinatorial regulation of Ndt80 and
Sum1 that is critical in precisely regulating middle sporulation genes
(see below).

Construction of Transcription Modules from ChIP-Chip Data. ChIP-
chip technology has been used to determine localization of a
particular TF’s binding site and possible target genes of a TF (10,
11, 16, 17). For the latter purpose, a statistical algorithm was used
to calculate a P value for each gene representing the significance of
deviation from the background based on the observed two channel
intensities (10, 17). Genes with P values less than a predefined
threshold are considered as target genes (10, 17). This approach
depends entirely on the fluorescence intensities and does not
provide or use any information of binding motifs. We applied
MODEM to ChIP-chip data, treating ratios of two channel intensities
the same as mRNA expression ratios in TFPE.

Table 1. Target genes (partial list) of Ndt80p identified from its
TFPE by using a core motif CACAAAA with one
mismatch allowed

Gene�ORF Probability Extended motif*
Expression
ratio, log2

SPS3 1.000 TTAGCGACACAAAAGAGACCT �5.644
SPS4 1.000 CGCGCGCCACAAAAACGTATC �5.644
SSP1 1.000 CAGGCGACACAAAATCATGAA �4.644
CWP1 0.993 AAGGTGCCACAAAAGAAAACA �3.184
SPO74 0.987 CTTGTGACACAAAAGAGAACA �3.059
HSP12 0.921 GGGGCGGCACAAAATAACATA �2.644
YFR032C 0.918 GAAGCGTCACAAATTAATAAC �2.556
IME2 0.837 CTTTACCCAAAAAATAAAACT �2.737

*Informative positions are highlighted in bold.
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ChIP-chip experiments for 106 TFs in yeast have been published
by Lee et al. (17). We first used REDUCE to identify significant motifs
in each experiment. If REDUCE finds, usually several, significant
motifs, we then construct transcription modules for each of the
motifs. We consider a module valid if the identified motif matches
the known binding site of the TF or, if the binding site of the TF is
unknown, the enriched function of member genes is consistent with
that of the TF. Using this criterion, we were able to validate
transcription modules (binding site and target genes) for 31 TFs,
among which the binding sites of 15 TFs were previously known and
16 are previously uncharacterized (Table 3, which is published as
supporting information on the PNAS web site). For the remaining
factors, REDUCE mostly failed to find any significant motif. There
are also a number of cases where the functions of genes in a module
are apparently unrelated to the function of the TF (e.g., we found
several modules contain many Y� helicase genes).

For some of the cases, the failure to construct a valid module can
be attributed to the fact that the ChIP-chip experiment was done
under a condition where the TF was not activated. For example, no
significant motif was found by REDUCE in the Pho4p ChIP-chip
experiment. Consistently, the list of 99 Pho4p target genes sug-
gested by Lee et al. (ref. 17 and http:��web.wi.mit.edu�young�
regulatory�network; 0.005 as a P value cutoff) only includes one
known target, PHM6, of �15 previously identified by microarray
experiments (18, 19). This example illustrates that accurately de-
fining the binding site and targets of a TF requires a ChIP-chip
experiment done under conditions that the TF is activated, which
is a challenge for high-throughput methods.

Example: The Sum1p module constructed from ChIP-chip data
(17) is shown as an example in Table 2. Sum1p is a transcriptional
repressor that regulates sporulation and chromatin silencing (Gene

Ontology). REDUCE found GTGTCAC as the most significant (P �
10�9) among motifs longer than 2 bases. Using GTGTCAC as the
core motif (1 mismatch allowed), MODEM predicted 78 genes
regulated by Sum1p, many of which were also in the set of 68 targets
predicted by Lee et al. (17) with a threshold P � 0.001. Similar to
the Ndt80p case, MODEM discovered additional flanking sequence
information (Table 2 and Fig. 1). Several genes, NDT80, SSP1,
CDA2, and MAM1, known to be regulated in sporulation, were not
found by the analysis of Lee et al. (17). It is known that transcrip-
tional regulation on Ndt80p by Sum1p is critical for the sporulation
program (20, 21); missing the NDT80 gene as a target of Sum1p
would make it difficult to infer the correct network topology. Genes
with small ratios such as NDT80 (Table 2) were missed by the
statistical analysis based on fluorescence data alone, but they were
identified by MODEM because a strong sequence motif can com-
pensate for the weak ratio. In general, MODEM is more sensitive in
picking up known targets than the method based on ChIP-chip data
alone. Among the 106 TFs studied by Lee et al. (17), 23 TFs have
at least one target gene in the combined dataset from the Yeast
Proteome Database (22), Saccharomyces cerevisiae Promoter Da-
tabase (23), and TRANSFAC (24). We found that MODEM works
better in six cases, equally good in 16 cases, and worse in one case
(see Supporting Text for details).

Inference of Combinatorial Regulation and Regulatory Networks in
Yeast Sporulation. Cooperation among several TFs (often called
‘‘combinatorial regulation’’) is generally believed to be the source
of complexity and sophistication in transcriptional regulatory pro-
grams. The MODEM outputs a PSFM for the TF binding site and a
set of target genes, which lays the groundwork for building mech-
anistic model of combinatorial regulation.
Identification of active transcription modules. REDUCE was used pre-
viously to identify motifs in the microarray experiments that
monitor temporal gene expression during sporulation (12, 14). We
used those motifs and the MODEM algorithm to construct modules.
The following picture emerged from comparing these motifs with
known ones, such as URS1, MSE, and MCB sites, or motifs
identified from TFPE or ChIP-chip data, such as Rap1 site (16), as
well as examining the functions of genes in the modules (Fig. 6,
which is published as supporting information on the PNAS web
site). At the beginning (0.5 and 2 h), biosynthesis and metabolism
are slowed down. The three repressed modules (represented by
AAATTTT, GAGATGA, and TGAAAAA consensus motifs)
include genes whose GO process annotations are greatly enriched in
particular functions. Namely, ‘‘rRNA processing,’’ ‘‘ribosome bio-
genesis,’’ and ‘‘ribosome assembly’’ annotations are enriched for the
AAATTTT and GAGATGA modules, whereas ‘‘metabolism’’ and
‘‘cell growth’’ annotations are enriched for the TGAAAAA mod-
ule (SGD Gene Ontology Term Finder) (15). TFs that recognize

Fig. 1. Extended binding site profiles for Ndt80p and Sum1p. The position
specific scoring functions of binding sites, i.e., the log ratio between the PSFM
for the true targets of Ndt80p (A) and Sum1p (B) and that of the corresponding
backgrounds. A positive score reflects that a base is favorable at the position.
A negative score reflects that a base is unfavorable at the position. The initial
input core motifs are shown in capital letters.

Table 2. Target genes (partial list) of Sum1p identified from a
ChIP-chip experiment by using a core motif GTGTCAC with one
mismatch allowed

Gene�
ORF Probability Extended motif*

Fluorescence
ratio, log2

Sum1P
target†

SPS1 1.000 TTTTTATGTGTCATTTTTTTT 1.379 Yes
SUM1 0.999 ATCAAAAGTGTCAGCAAACAG 1.220 Yes
SPO74 0.996 ATTTCTTGTGACACAAAAGAG 1.000 Yes
SPR3 0.980 CTCTTTTGTGTCGCTAACAAA 0.934 Yes
CDA2 0.985 TTGCGTTGCGTCACAAAATCA 0.807 No
SSP1 0.943 TGATTTTGTGTCGCCTGTTTG 0.824 No
MAM1 0.930 AAAATTAGTGACACAAAATAG 0.696 No
NDT80 0.902 TAAATAGGTGACACAAAATGG 0.705 No

*Informative positions are highlighted in bold.
†Denotes whether genes are identified as targets of Sum1p by Lee et al. (17).
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these motifs have not yet been identified. Another repressed
module (from 0.5 to 5 h) is Rap1p module (motif CCCATAC) that
includes metabolism and ribosomal biosynthesis genes. This obser-
vation suggests that Rap1p and other TFs reduce the rate of
metabolism and biosynthesis in response to starvation that triggers
the sporulation program. The URS1 module consists of the known
early sporulation transcription factor complex Ime1p�Ume6p and
its binding site DSGGCGGCND (14). This module contains many
known early meiosis genes, such as HOP1, MEK1, RIM4, ZIP1, and
IME2, as well as genes involved in metabolism, such as CAR1,
CAT2, CRC1, ACS1, and PUT3. The observed induction of the
URS1 module in the entire sporulation time course (12) suggests
that the Ime1p�Ume6p complex has unknown regulatory functions
in sporulation in addition to turning on the early genes.

The MCB module (consensus motif ACGCGT), which contains
many cell-cycle and cell-proliferation genes like RAD17, RAD27,
CDC21, CDC46, and SPO26, is induced between the early and the
middle-late stages (0.5–7 h) (12). The MCB complex is critical in
regulating cell cycle, but its roles in sporulation are not clear. Given
RAD17 is a member of this module and regulates the checkpoint in
sporulation, our hypothesis is that the MCB complex may regulate
the switch between mitosis and meiosis by turning on or off RAD17
and other related genes.
Building more complete network elements by combining modules. The
MSE module (motif CRCAAAW; ref. 14) remains highly induced
through the middle (5 h) and late stages (11.5 h). Recently,
researchers found that Sum1p as well as Ndt80p can recognize the
MSE site and, thus, provide negative control on the transcription of
NDT80 and other middle sporulation genes (21). Xie et al. (25)
showed that Sum1p binds to different MSE sites with significantly
different affinities. To understand how the specificity is achieved,
we analyzed the Sum1p module constructed from the ChIP-chip
experiment (17) and the Ndt80p module constructed from the
TFPE (14) (see above). The PSFMs for binding motifs show that
Sum1p and Ndt80p prefer the DNA segments GTGTCACAAA
and GNGNCACAAAA, respectively (Fig. 1). The obvious overlap
between the two binding sites (underlined) may explain why the
binding affinity of Sum1p to the MSE site depends on sequence
context. During preparation of this article, we learned that Vershon
and colleagues (26) have showed experimentally that Ndt80p and
Sum1p do indeed bind to overlapping but distinguished motifs,
completely consistent with our findings.

By constructing Ndt80p and Sum1p modules (Fig. 2 Left), we can
see a distinctive regulatory arrangement: Ndt80p induces, whereas
Sum1p represses, a set of middle genes, Ndt80p autoregulates itself,
and Sum1p inhibits transcription of NDT80. This arrangement,
combined with the overlap of binding sites of Ndt80p and Sum1p,
provides a mechanism that has several attractive features as a
regulatory system.

First, it becomes possible to selectively regulate Sum1p’s
targets. The general repressor Sum1p constitutively represses its
target genes, including a set of genes that need to be transcribed
by Ndt80p in the middle stage of sporulation. Because of their
overlapping binding sites, Ndt80p and Sum1p would compete to
regulate a subset of middle genes; the concentration of Ndt80p
increases as sporulation proceeds and it takes over in the middle
stage of sporulation. Those Sum1p-only targets (not bound by
Ndt80p) remain repressed and presumably are not functioning in
sporulation.

Second, this regulatory arrangement provides precise temporal
control of the shared middle genes by the Ndt80p and Sum1p
modules, making the notable quick and complete response of these
genes possible. We examined the expression profiles of genes in the
Ndt80p and Sum1p modules (Fig. 3). The apparent pattern is that
all 25 genes except DAL4 shared by the two modules are precisely
up-regulated in the middle stage (5 h, the fourth time point) of
sporulation. It is not surprising to see NDT80 in this group and nine
other genes (CDA2, SPS4, SPO77, DTR1, SPO21, SSP1, SPS1,
SPR3, and SPO74) annotated to function in sporulation or meiosis.
YSW1 is expressed specifically in spores. Another four genes, CRR1,
HXT14, MIP6, and PES4, are involved in various biological pro-
cesses. The remaining nine genes have no known functions, and it
is reasonable to predict that they may play roles in sporulation. It
is important to note that genes regulated only by Ndt80p or Sum1p
do not have such precise temporal regulation (Fig. 3). Our hypoth-
esis is that the genes regulated by both Ndt80 and Sum1 play critical
roles that require synchronous appearance to ensure the proper
proceeding of sporulation. The ability to make temporally well-
defined changes is a general and important feature of development
and, thus, we hypothesize that similar regulatory arrangements may
be implemented in diverse developmental processes in different
organisms. Similar mechanism may also be used to define sharp
spatial boundaries in developing embryos.

Given the topology of the regulatory arrangement (Fig. 2 Left)
and the information of binding-site sequences, we can build a
mechanistic model to analyze its behavior. Such analysis may
provide a quantitative description of how the system works and
reveal essential features of the system. The experimentally observed
behavior needs to be reproduced by the model with parameters in
a reasonable range.

We adapted a physical chemistry model proposed by Shea and
Ackers (27) and generalized by Buchler et al. (28) to study the
regulatory arrangement in Fig. 2 Left (for details, see Supporting
Text and Fig. 7, which is published as supporting information on the
PNAS web site). According to the arrangement, the transcript level
of NDT80 is controlled by the concentrations of the active Sum1p
(Fig. 2 Left) and Ndt80p. With the simplifying assumption that the
active protein level of Ndt80p is proportional to its transcript level

Fig. 2. Network architectures inferred from transcriptional regulatory relationships. (Left) Controlled�autoregulation network architecture in sporulation.
Overlapping binding site of Ndt80p and Sum1p are shown in magenta and cyan, respectively. (Right) Multiinput network architecture in amino acid starvation (9).
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(neglecting possible posttranscriptional regulation), Ndt80p level
can be determined self-consistently as a function of Sum1p level.
Thus, the transcript level of the regulatory targets of Ndt80p and�or
Sum1p are all determined by the Sum1p level. It has been shown
that Sum1p concentration decreases during sporulation (29).
Therefore, we analyzed responses of genes to the change of active
Sum1p. First, we found similar differential regulation as observed
in experiments (Fig. 4). As Sum1p level decreases (but still higher
than the concentration at which Sum1p site is half occupied in the
absence of competition), genes belonging to both the Ndt80p and
Sum1p modules (including Ndt80p itself) are sharply induced;
genes regulated only by Ndt80p are induced slightly, but the
expression changes are much smaller than those of the dually
regulated genes, whereas genes regulated only by Sum1p remain

repressed (only a small induction). Second, we found the positive
autofeedback and sequence competition necessary for the sharp
induction of dually regulated genes. Without the autofeedback,
dually regulated genes are only weakly induced. If the binding of
Ndt80p and Sum1p is not exclusive, the level of induction decreases
significantly (Fig. 4). We speculate that autofeedback and compe-
tition between activator and repressor may be a general feature of
network design, where sharp temporal or spatial profile is needed
and the control is at the promoter level, such as in yeast sporulation
and fly embryonic development.
Inference of the network topology. Based on the transcription modules
and the existing knowledge, we inferred the networks that regulate
sporulation (Fig. 5). Because the network topology is quite com-
plex, we mainly focused on transcriptional cascades. Various net-
work regulatory strategies, such as AND gate, autoregulation
(Ndt80p), and feed-forward loop (Ime1p�Ume6p and Ndt80p

Fig. 3. Gene expression profiles for differentially regulated genes during
sporulation. Expression profiles in sporulation for genes in both the Ndt80p
and Sum1p modules (A), only in the Ndt80p module (B), and only in the Sum1p
module (C). The x axis represents time points in (0, 0.5, 2, 5, 7, 9, and 11.5 h)
sporulation experiments (14), and the y axis is the log ratio of gene expression
level.

Fig. 4. Dependence of gene transcription levels on the active concentration of
Sum1p, produced by the mechanistic model derived from the network arrange-
ment in Fig. 2 Left. Green, blue, and black lines represent genes regulated by
Ndt80p only, Sum1p only, and dually regulated genes, respectively. The red and
orange dashed lines represent the hypothetical cases for the dually regulated
genes with no sequence competition (between Ndt80p and Sum1p) and no
autofeedback of Ndt80, respectively. All of the other parameters are kept the
same. Sum1p level is measured relative to the concentration at which Sum1p site
ishalf-occupied intheabsenceofcompetition.Transcript level ismeasuredas fold
changes by using the level at Sum1p concentration equals 10 as baseline. See
Supporting Text for the detail of the model and the choice of parameters.

Fig. 5. Regulatory networks in the yeast sporulation. All blue links are based
on the modules we constructed, and only the three yellow links are taken from
literature.

2002 � www.pnas.org�cgi�doi�10.1073�pnas.0405537102 Wang et al.



regulate IME2), have been exploited. Regulation provided by this
network is consistent with temporal events occurring in sporulation
(20, 29). Ime1p�Ume6p complex is activated first and transcribes a
set of early genes, such as MEK1, HOP1, etc., as well as IME2.
Ime2p is a kinase that inhibits the activity of Sum1p (29). As the
activity of Sum1p decreases and Ime1p�Ume6p complex keeps
active, the first AND gate is open to transcribe NDT80. Because of
the autoregulation, once NDT80 is transcribed, its activity is in-
creased dramatically. The second AND gate is then open to
transcribe the middle genes and also keeps the transcript level of
IME2 high to continuously inhibit the activity of Sum1p. This
picture is likely to be an oversimplification of the reality because
gene regulation during sporulation is very complex. If the appro-
priate experimental data such as TFPEs or ChIP-chip under the
right conditions for all TFs in the yeast genome were available, we
would be able to obtain a more complete network structure.

Discussion
We presented the MODEM algorithm for identifying the binding site
and target genes of a TF and demonstrated its utility for analyzing
ChIP-chip and TFPE data. Compared with other approaches (ref.
3 and references therein) for identifying binding sites and target
genes of TFs, the MODEM algorithm has a number of advantages.
Although clustering-based module-inference methods depend on
gene expression data under multiple conditions (6–8), MODEM can
construct a module from a single microarray experiment such as
ChIP-chip or TFPE. The feature is particularly useful in monitoring
how regulatory targets of transcription factors change upon bio-
logical context (such as different time points during cell cycle or
during environmental perturbations) and provides a way to inte-
grate data from a variety of sources. In addition, because the
MODEM algorithm is based on a joint probability model that
combines sequence information and gene expression data, its
sensitivity and specificity is higher than methods based on either
binding site motif or express data alone. MODEM is also distinct from
methods for motif finding by combining sequence and expression
data (12, 30, 31) because it focuses on target identification.

We showed that we could implicate genes (and especially regu-
lators) of previously unknown function in processes such as sporu-
lation. Such inferences can, and no doubt will, be tested by
experiment. We could also infer the logic of regulation, especially
the ways in which actual modules are combined. Notable in this
regard is the finding of overlapping DNA binding motifs. Specifi-

cally, it would be interesting to construct adjacent or overlapping
binding sites of Ndt80p and Sum1p (or other pairs of regulators) in
the promoter region of a reporter gene and test whether appro-
priately regulatory logic results. It would also be interesting to make
specific single-base mutations at the binding site that affect the
binding of one factor and see how it changes the temporal profile
of the expression. Similarly, the properties of the network archi-
tectures proposed here and those likely to emerge from future
studies can and should be tested experimentally.

Bioinformatics can identify components and links between com-
ponents in the networks. To understand the underlying regulatory
mechanism, we need mechanistic models. We believe the combi-
nation of bioinformatics and molecular modeling is necessary to
understand the general design principles used by various regulatory
systems. We showed that a physical chemistry model can capture
the main features of the controlled�autoregulation architecture of
Sum1p�Ndt80p. The predictions from this model are waiting for
experimental test.

As more and more microarray and ChIP-chip experiments done
under various conditions become available, we will be able to
construct transcription modules and monitor activation for more
and more TFs. We expect other regulatory architectures like the
controlled�autoregulation architecture of Sum1p�Ndt80p in sporu-
lation (Fig. 2 Left) to be discovered. It is interesting to compare the
logical structures and dynamic features of different network archi-
tectures and correlate their characteristics to the biological pro-
cesses in which they are implemented. For instance, the two
network architectures shown in Fig. 2 are quite different: con-
trolled�autoregulation motif provides precise temporal control and
sharp response in sporulation (see Results), whereas multiinput
architecture may enable both general and pathway specific response
to the lack of amino acid in the environment (9). As more data are
becoming available in yeast as well as in other organisms, it would
be interesting to examine whether these network architectures are
general, e.g., whether the controlled�autoregulation architecture is
more generally exploited by different developmental processes.
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