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ABSTRACT We study the designability of all
compact 3 � 3 � 3 and 6 � 6 lattice-protein struc-
tures using the Miyazawa–Jernigan (MJ) matrix.
The designability of a structure is the number of
sequences that design the structure, i.e., sequences
that have that structure as their unique lowest-
energy state. Previous studies of hydrophobic-polar
(HP) models showed a wide distribution of struc-
ture designabilities. Recently, questions were raised
concerning the use of a two-letter (HP) code in such
studies. Here, we calculate designabilities using all
20 amino acids, with empirically determined interac-
tion potentials (MJ matrix) and compare with HP
model results. We find good qualitative agreement
between the two models. In particular, highly design-
able structures in the HP model are also highly
designable in the MJ model—and vice versa—with
the associated sequences having enhanced thermo-
dynamic stability. Proteins 2002;49:403–412.
© 2002 Wiley-Liss, Inc.
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INTRODUCTION

The sequences and structures of natural proteins form
special classes among all possible sequences and struc-
tures. A natural protein sequence has, as its native state, a
unique global minimum of free energy that is well sepa-
rated in energy from other misfolded states1—a property
not typically shared by random sequences of amino acids.
Protein structures in general possess striking geometric
regularities,2,3 characterized by preferred secondary struc-
tures and motifs4 and often by tertiary symmetries. It has
been noted that a large number of proteins are accounted
for by a small number of folds5,6 or superfolds.7 Several
authors have proposed possible physical mechanisms be-
hind nature’s selection of protein folds. Finkelstein and
coworkers argued that certain motifs are easier to stabilize
and thus more common either because they have lower
structural (e.g., bending) energies or because they have
unusual energy spectra over random sequences.8–10 Yue
and Dill observed in a lattice hydrophobic-polar (HP)
model that protein-like folds are associated with se-
quences that have a minimal number of degenerate lowest-
energy states.11 Govindarajan and Goldstein suggested
that the evolutionary pressure on protein structures is to
fold fast. They studied the “foldability” of structures in a

lattice model and found that the foldability, optimized over
sequences, varies from structure to structure.12,13 They
further argued that structures with larger optimal foldabil-
ity should tolerate more sequences and be more robust to
mutations.

More recently, this issue has been investigated from the
perspective of “designability.”14–17 The designability of a
structure is defined as the number of sequences that can
design the structure, that is, sequences that possess the
structure as their unique lowest-energy state. Li et al.
studied the designability of all compact structures in HP
lattice models of sizes 3 � 3 � 3 and 6 � 6.14 They found
that structures differ drastically in their designabilities
and that a small number of structures emerge with
designabilities much larger than the average. The se-
quences associated with these highly designable struc-
tures are also thermodynamically more stable14,15 and fold
much faster than typical sequences.16 Further, these
structures possess regular secondary structures and mo-
tifs and, in some cases, global symmetries.18 Studies of
designability for a larger lattice model (4 � 3 � 3)19 and for
an off-lattice model20 yielded similar overall results.

However, most studies of designability have been based
on HP-type models. It is a legitimate concern to ask how
the designability of structures depends on interaction
potentials and on the alphabet size (the number of differ-
ent kinds of amino acids in the model).21–24 In a recent
lattice-model study, it was concluded that the designabil-
ity of a structure depends sensitively on the size of the
alphabet in the model—in particular, structures that were
highly designable for a two-letter alphabet were found not
especially designable with a many-letter alphabet.23 In
this article, we study the designability of all compact
structures in two lattice models using all 20 amino acid
types, with interactions given by the Miyazawa–Jernigan
(MJ) matrix.25 We compare the results with those of Ref.
14, which were obtained using only two types (H and P) of
amino acids. We find that the designability of a structure is
not sensitive to the alphabet size when the hydrophobic
interaction is included in the potential.
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MODELS AND METHODS

We study a lattice-protein model in both 2D and 3D. In
the 2D case, the model is a self-avoiding chain of N � 36
residues on a square lattice. We consider only the maxi-
mally compact structures, i.e., structures contained in a
6 � 6 square. We also study a 2D system with a chain
length N � 30 (6 � 5). In the 3D case, the chain has a
length of N � 27 and folds into a maximally compact
configuration of 3 � 3 � 3. The study of 3D structures is
computationally limited to short chains (N � 30) with
corresponding surface-to-core ratios of approximately 2:1,
much larger than that of typical natural proteins. 2D
models can achieve a more realistic 1:1 surface-to-core
ratio with manageable chain lengths, at the risk of intro-
ducing other unphysical effects due to the dimensional
reduction. Thus, it is more convincing to draw conclusions
based on a combined study of 2D and 3D models.

In the model, a sequence of length N is specified by the
residue type �i, (i � 1, 2, . . . , N) along the chain, where �
is one of the 20 natural amino acids. A structure is
specified by the position ri, (i � 1, 2, . . . , N) of each residue
along the chain. The energy for a sequence folded into a
structure is taken to be the sum of the contact energies,
that is

E � �
i � j

e�i�j��ri � rj� , (1)

where e�i�j
is the contact energy between residue types �i

and �j, and �( ri � rj) � 1 if ri and rj are adjoining lattice
sites with i and j not adjacent along the chain, and �( ri �
rj) � 0 otherwise. The contact energies e�	 are taken from
the MJ matrix.25 Note that the water solvent is implicit in
the Hamiltonian (1). The energy e�	 of a contact between
residue � and 	 is the relative energy with respect to

Fig. 1. Histograms of designability NS for the 6 � 6 system for the MJ matrix with gap cutoff (a) gc � 0.0, (b) gc � 0.4, (c) gc � 0.8, and (d) for the HP
model. Results for the MJ matrix were obtained by using 9,095,000 random sequences.
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separated � and 	 in water. So, the residues on the surface
of a structure are considered to be in contact with water.

There are several different MJ matrices in Ref. 25. We
use matrix eij (the upper half and diagonal of Table V in
Ref. 25). This matrix contains all the contributions to the
interaction energy including, in particular, the hydropho-
bic or solvation contribution. The hydrophobic contribu-
tion, although nonspecific, is residue dependent and is the
dominant contribution to the MJ matrix eij.

26 For other MJ
matrices in Ref. 25, the hydrophobic contribution has been,
to various degrees, removed. Thus, they are not appropri-
ate for folding studies like this one (cf. discussion and
conclusion sections). We also used updated versions of the
same MJ matrix.27,28 The results are similar.

Fig. 2. Average energy gap 
�10� vs designability NS for the 6 � 6 system. (a) For the MJ matrix. (b) For the HP model.

Fig. 3. (a) Designability NS with gap cutoff gc � 0.8 vs NS with gc � 0 for the MJ model for each 6 � 6 structure. (b) NS with gc � 0.8 for the MJ model
vs NS for the HP model for each 6 � 6 structure. Note that most structures are close to the origin.

Fig. 4. Most designable structure in the 6 � 6 system.
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In each case, we enumerate all maximally compact
self-avoiding structures. We then randomly select a large
number of sequences. For each of these sequences, we

evaluate its energy on all the structures using Eq. 1. If the
sequence has a unique lowest-energy state, or ground state
(the criterion of being unique will be defined below), we say
the sequence can design the structure and the following
quantities are recorded: the ground-state structure, the
ground-state energy E0, the second lowest energy E1, the
depth of the ground state

� � 
E�� � E0 , (2)

and the variance of the energy spectrum

2 � 
E2�� � 
E��2 , (3)

where 
��� denotes averaging over all compact structures
other than the ground state. The quantities �, Z � �/,29,30

and �10 � E1 � E0
31,32 have been widely used to character-

ize how protein-like a sequence is because of their correla-
tions with the folding rate.16,33,34 The ground state of a
sequence is said to be unique if for the sequence there are
no other structures with energy lower than E0 � gc, where
the gap cutoff gc is a parameter. We used gc � 0, 0.4, and
0.8 (in the unit of RT at room temperature) in our
calculations. After the calculation is completed with all
randomly selected sequences, we measure the designabil-
ity of a structure, NS, by the number of sequences that
design the structure.

Fig. 5. (a) Ground-state energy E0, (b) depth of ground state �, (c) width of compact spectrum , and (d) Z � �/ vs NS for the 6 � 6 system with gap
cutoff gc � 0. The solid lines are averages for given NS and the error bars indicate the variances. Data were obtained from 5,100,000 random sequences.

Fig. 6. Scaled histogram vs scaled designability NS for 6 � 6 and 6 �
5 systems. For a chain of length L, we denote by �(NS,L) the number of
structures with designability NS. The average designability is 
NS� and NC

is the total number of structures.
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We compare our results with those of Ref. 14, which
were obtained using an HP model. The parameters used in
Ref. 14 for Eq. 1 are: eHH � �2.3, eHP � �1, and ePP � 0,
which were derived from and can be viewed as the
two-letter simplification of the MJ matrix eij.

14,26

RESULTS

First, we present results for the 2D 6 � 6 system. There
are 28,728 maximally compact structures unrelated by
symmetries of rotation, reflection, or reverse labeling. In
the calculation with the MJ matrix, we used up to 9,095,000
randomly selected sequences of 20 amino acids. We found
that 96.74, 42.46, and 17.79% of sequences had a unique
ground state when the gap cutoff gc was set to 0, 0.4, and
0.8, respectively. In Figure 1(a)–(c), we plot the histogram
of the designability NS, i.e., the number of structures with
a given NS versus NS. As in the case of the HP model

[shown in Fig. 1(d)], the distribution of NS has a long tail,
that is, there are some structures with much higher than
average designability.14,23,35 Further, for large gap cutoff
gc [Fig.1(c)] the curve resembles that of the HP model. One
measure of the thermodynamic stability of a ground state
is the energy gap �10 between the ground state and the
next lowest energy state. To display the correlation be-
tween thermodynamic stability and designability, we aver-
age �10 over all sequences that design a structure, and
then average over all structures with a given NS. This
doubly averaged energy gap is plotted against designabil-
ity NS in Figure 2. In both models (MJ and HP), there is a
strong positive correlation between the average gap and
designability NS.

For the designability NS to be a useful characterization
of structures, it should be robust with respect to some
variation in model parameters. We found a good correla-

Fig. 7. Histogram of designability NS for the 3 � 3 � 3 system for the MJ matrix with gap cutoff (a) gc � 0.0, (b) gc � 0.4, (c) gc � 0.8, and (d) for the
HP model. Results for MJ matrix were obtained by using 13,550,000 random sequences. Results for HP model were obtained by enumerating all 27
sequences.
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tion between the NSs of a given structure obtained with
various gap cutoffs gc [Fig. 3(a)] and obtained with the HP
model [Fig. 3(b)]. In particular, highly designable struc-
tures in the HP model are also highly designable in the MJ
matrix model and vice versa. The top structure is the same
for both models (Fig. 4).

Do the sequences that design highly designable struc-
tures have unusual ground-state energies E0, or ground-
state depths � (Eq. 2), or spectral widths  (Eq. 3)? In
Figure 5 we plot the average over sequences of E0, �, ,
and Z � �/ versus NS. It is clear from the figure that there
are no significant correlations between NS and average E0

or �. Thus, a highly designable structure does not have a
lower E0 or a larger �. On the other hand, NS correlates

inversely with the average width of the spectrum  and
therefore correlates positively with the Z score. However,
the scatter of data for structures of given NS is so large
that small  does not necessarily imply large NS. A small
spectral width  is a necessary but not a sufficient
condition for a structure to be highly designable.

To see how the distribution of sequences among the
structures changes with the length of the chain, we also
studied a 6 � 5 system. In this case, there are 6802
maximally compact structures unrelated by symmetries.
We used 5,200,000 randomly selected sequences. The
percentage of sequences that had a unique ground state
was 96.86, 43.96, and 19.11%, for gc � 0, 0.4, and 0.8,
respectively. These percentages are slightly larger than

Fig. 8. The average gap 
�10� vs designability NS for the 3 � 3 � 3 system. (a) For the MJ matrix. (b) For the HP model.

Fig. 9. (a) Designability NS with gap cutoff gc � 0.8 vs NS with gc � 0 for the MJ matrix for each 3 � 3 � 3 structure. (b) NS with gc � 0.8 for the MJ
matrix vs NS for the HP model for each 3 � 3 � 3 structure.
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those in the 6 � 6 system, indicating a slight decrease in the
probability of a unique ground state with increasing
chain length. In HP models, the histograms of designabili-
ties for different system sizes were found to be identical
after rescaling. To test for this property in the MJ model,
we let �(NS,L) be the number of structures with designabil-
ity NS in the system of chain length L. The dependence of
�(NS,L) on L may be “scaled out,” and �(NS,L) may be
reduced to a “universal” form. We make the scaling ansatz
(guess)

��NS, L� �
Nc


NS�
f � NS


NS�
�, (4)

where Nc is the total number of structures and 
NS� the
average designability for chain length L. If Eq. 4 holds,
then the universal function f(x) should be independent of
L. In Figure 6, we plot f � �
NS�/Nc versus x � NS/
NS� for
systems of 6 � 6 and 6 � 5. The two curves match well,
supporting the scaling ansatz (4).

Fig. 10. (a) Top structure for the 3 � 3 � 3 system with the MJ matrix. (b) Top structure for the HP model. (c) Structure with low NS in both the MJ and
HP models. Poorly designable structures typically show less geometric regularity than highly designable structures.

Fig. 11. (a) Ground-state energy E0, (b) ground-state depth �, (c) width of compact spectrum , and (d) Z � �/ vs NS for the 3 � 3 � 3 system. Solid
lines are averages for given NS. Error bars indicate variances.
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We now turn our attention to the 3D 3 � 3 � 3 system.
There are 51,704 compact structures unrelated by symme-
tries. A total of 13,550,000 randomly selected sequences of
20 amino acids were used in the calculation. With the gap
cutoff gc � 0, 0.4, and 0.8, the percentage of the sequences
that had a unique ground state was, respectively, 96.67,
30.20, and 8.26%. In the HP model this percentage is
4.75%.14 Histograms of the designability NS, along with
the histogram for the HP model, are plotted in Figure 7.
Similar to the 2D case, there is a long tail to the distribu-
tion and the histogram for gc � 0.8 resembles that of the
HP model. In Figure 8, we show the average gap 
�10�
versus NS. Again, the sequences that design structures
with larger NS have larger gaps, on average.

Note that there seems to be a qualitative difference in
Figures 8(a) and (b): 
�10� varies continuously with NS for
the 20-letter code but has a jump in the HP model. This
jump in the HP model reflects two different kinds of
rearrangements between the ground state and the next
lowest energy structure. One kind of rearrangement
changes the position of an H monomer from relatively
buried to relatively exposed, so the number of H water
bonds is increased. This kind of rearrangement has an
energy � 1. The second kind of rearrangement breaks an
HOH bond and a POP bond to form two HOP bonds,
which has an energy cost of only 2eHP � eHH � ePP � 0.3.
The jump in Figure 8(b) indicates that rearrangements of
the first kind are required for structures with large NS but
not for structures with small NS. The difference in energy
between the two kinds of rearrangements is smeared out
when the 20-letter code is used.

The designability of structures is rather robust charac-
terization—we observe good correlations between NSs
obtained with different gcs and between the MJ and HP
models (Fig. 9). The most designable structure in the MJ
model [shown in Fig. 10(a)] is not the same as in the HP
model [shown in Fig. 10(c)], although they share some
common geometric features, e.g., many antiparallel long
lines. In Figure 11 we plot the quantities E0, �, , and Z �
�/ for the 3D 3 � 3 � 3 system versus NS. Similar to the
2D case, there is little dependence of E0 and � on NS. On
average, there is an inverse correlation between  and NS

and therefore a positive correlation between Z and NS. The
scatter of the data is large.

Finally, we consider the set of sequences that design the
top 3 � 3 � 3 structure in the MJ model. Of 13,550,000
randomly selected sequences, 1721 of them design the top
structure, namely, they have the top structure as their
unique ground state. In Figure 12, we plot the average
hydrophobicity of the residue as a function of the chain
index i, averaged over all the 1721 sequences that design
the top structure. It is clear that there is a strong
correlation between the average hydrophobicity of the
residues and the exposure to water of the site—the more
buried the site, the more hydrophobic the residue, on
average. In Figure 13 we plot several quantities versus the
ground-state energy E0 for the sequences that design the
top structure. We see that there is no correlation between
the gap �10 and the ground-state E0, whereas E0 is
inversely correlated with both � and . However, no

obvious correlation is seen between E0 and Z � �/, as if
the effect of a lower E0 is just to uniformly pull down the
energy spectrum, enlarging � and  by the same factor.
Similar statistical behaviors are found for all sequences.

DISCUSSION AND CONCLUSION

There has been much discussion of the minimum alpha-
bet size for protein folding.22,36–41 The answer undoubt-
edly depends on the questions addressed. The above
results show no sensitive dependence of designability on
the alphabet size when the potential includes the hydropho-
bic interaction. Recently, Buchler and Goldstein studied
the designability for structures on a 5 � 5 lattice using
various alphabet sizes for the sequence.23,24 They obtained
poor or no correlation between the designability NS ob-
tained with our HP parameters and with an MJ matrix.
The reason for this discrepancy is that they used a
different MJ matrix than the one we used to derive our HP
parameters. Note that there are several matrices in
Miyazawa and Jernigan’s original articles.25,27 The one we
used for this study, and for deriving our HP parameters, is
the matrix eij, which is the upper half of Table V in Ref. 25
or the upper half of Table 3 in Ref. 27. This is the matrix
containing all interactions including the hydrophobic inter-
action. We analyzed this matrix via eigenvalue decomposi-
tion26 and found that the matrix can be well approximated
by the following form:

eij � ẽij � hi � hj � c�i, j� . (5)

The additive term hi � hj originates from the hydrophobic
interaction and it dominates the potential (5).26 The
“two-body” term, c(i,j), is small compared to the additive
term and represents the tendency of similar amino acids to

Fig. 12. Average hydrophobicity over the sequences that design the
top 3 � 3 � 3 structure in the MJ model. The size of each black dot, from
small to large, represents the position of the residue: corner, edge, face,
and center. The hydrophobicity scale of the 20 amino acids is taken from:
Creighton TE. Proteins. Freeman: New York; 1993. Note that the
hydrophobic scale ranges from negative (hydrophobic) to positive (hydro-
philic).
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segregate.26 Note that the hydrophobic interaction hi � hj
not only imposes an overall drive toward compactness but,
more importantly, it is also the main determinant of
structural specificity.15,26 The choice of eHH � �2.3, eHP �
�1, and ePP � 0 in our HP study can be viewed as the
result of a hydrophobic part hH � �1 plus a small two-body
part c(H,H) � �0.3, with hP � 0 and c(H,P) � c(P,P) � 0.
The current study shows that there is no qualitative
difference between our two-letter HP model and the full
MJ matrix as far as designability is concerned. Thus, the
designability of structures has no significant dependence
on the alphabet size, as long as the potential is dominated
by the hydrophobic or solvation force.24 However, the
outcome can be different for qualitatively different amino
acid interaction potentials. For example, in the MJ matrix
that Buchler and Goldstein used in their calculation
(Table VI of Ref. 25) the hydrophobic force has been
removed. It is a different potential, dominated by the
pairing term c(i,j) of Eq. 5. Its set of highly designable
structures is different from that of the full MJ matrix and
similar to that obtained for a random pairing potential.24

Several authors have investigated the effect of the two-
body pairing term in Eq. 5 on designability.35,42–45 In
particular, Shahrezaei and Ejtehadi showed in the case of
a two-letter code that the set of highly designable struc-
tures is robust with respect to potential parameters and is

largely determined by the structures’ geometry.25 It would
be revealing to study how the designability of structures
changes as the potential is changed from solvation-like to
random-pairing-like.46 It is not yet clear what role the
alphabet size plays in the case of a random-pairing poten-
tial.24
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