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Abstract

Only about 1000 qualitatively different protein folds are believed to exist in nature. Here, we review theoretical studies which suggest that

some folds are intrinsically more designable than others, i.e. are lowest energy states of an unusually large number of sequences. The

sequences associated with these folds are also found to be unusually thermally stable. The connection between highly designable structures

and highly stable sequences is generally known as the ‘designability principle’. The designability principle may help explain the small

number of natural folds, and may also guide the design of new folds.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Two remarkable features of natural proteins are the

simple fact that they fold and the limited number of distinct

folds they adopt. Random amino-acid sequences typically

do not fold to a unique structure. Rather they have many

competing configurations of similar minimum free energy.

Nature has evolved sequences that do fold stably, but it is

estimated that the total number of qualitatively different

folds is only about 1000 [1–3].

To attempt to explain these remarkable features of

natural proteins, we have proposed a principle of desig-

nability [4–8]. The designability of a structure is the

number of sequences which have that structure as their

unique lowest-energy configuration [8]. In a wide range of

models, structures are found to differ dramatically in

designability, and sequences associated with highly design-

able structures have unusually high thermal stability

[8–12]. We refer to this connection between the desig-

nability of a structure and the stability of its associated

sequences as the designability principle. In model studies,

highly designable structures are rare. As a result, thermally

stable sequences are also rare. We conjecture that the

designability principle also applies to real proteins, and that

natural protein folds are exceptional, highly designable

structures.

In this article, we review the designability principle. We

start from a minimal model of protein structure in which the

designability of a structure can be understood geometrically

as the size of its basin of attraction in sequence space. More

detailed models, including all 20 amino-acid types and

off-lattice backbone configurations, reinforce the basic

principle and provide a framework for the design of qualita-

tively new protein folds.

2. Purely hydrophobic (PH) model

Generally, the folding of proteins relies on the formation

of a hydrophobic core of amino acids. Consideration of

hydrophobicity alone leads to a very simple description of

proteins—the ‘purely hydrophobic’ (PH) model [9]. In this

model, sequences consist of only two types of amino acids,

hydrophobic and polar [13]. Structures are compact walks

on a cubic or square lattice. An example of a 6 £ 6 square

structure is shown in Fig. 1(a). As indicated, each structure

consists of core sites surrounded by surface sites. The

energy of a particular sequence folded into a particular

structure is the number of hydrophobic amino acids

occupying core sites, multiplied by 21,

E ¼ 2
XN

i¼1

sihi ð1Þ

A binary string {si} represents each folded structure: si ¼ 1
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if site i along the chain is in the core, and si ¼ 0 if the site is

on the surface. Similarly, a binary string hi represents each

sequence: hi ¼ 1 if the ith amino acid in the sequence is

hydrophobic, and hi ¼ 0 if the amino acid is polar.

Within the PH model, structures differ dramatically in

their designability. In practice, the designability is obtained

by sampling a large number of binary sequences, and, for

each sequence, recording the unique lowest-energy struc-

ture if there is one. Finally, the number of sequences which

map to, i.e. ‘design’, each structure is summed to give the

designability NS of the structure. Fig. 1(b) shows a

histogram of designability NS for compact 6 £ 6 structures.

There are 57,337 structures, which map to the same number

of structure binary strings {si}: However, since two or more

structures can map into the same binary string (these

‘degenerate’ structures have zero designability), the number

of distinct structure binary strings is smaller, being 30,408.

Most structures have a designability around 50, but a small

number of structures have designabilities more than 10 times

this high. If sequences were randomly assigned to struc-

tures, the result would be the Poisson distribution which is

shown for comparison, and there would be no structures

with such high designability.

Importantly, the PH model has a simple geometrical

representation that explains both the wide range of design-

abilities and the close connection between designability and

thermal stability. To find the relative energies of different

structures for a given sequence, the energy in Eq. (1) can be

replaced by

E ¼
XN

i¼1

ðhi 2 siÞ
2 ð2Þ

This replacement is allowed because the extra term
P

h2
i is a

constant for a given sequence, and the other extra term
P

s2
i

is also a constant, equal to the number of core sites, for all

compact structures. Eq. (2) indicates that the energy of a

sequence folded into a particular structure is simply the

Hamming distance [14] between their respective binary

strings. So, for a given sequence, the lowest-energy

structure is simply the closest structure. The designability

of a structure is therefore the exclusive volume of binary

strings (sequences) that lie closer to it than to any other

structure, as shown schematically in Fig. 2.

The wide range of structure designabilities can be traced

to the nonuniform density of structures in the space of

Fig. 1. (a) A 6 £ 6 compact structure and its corresponding string. In the

‘purely hydrophobic’ (PH) model, only two types of sites are considered,

surface sites and core sites. The core is shown enclosed by a dotted line.

Each structure is represented by a binary string si ði ¼ 1;…; 36Þ of 0s and 1s

representing surface and core sites, respectively. (b) Histogram of

designability NS for the 6 £ 6 PH model, obtained using 19,492,200

randomly chosen sequences. A Poisson distribution with the same mean is

shown for comparison.

Fig. 2. Schematic representation of sequences and structures in the purely

hydrophobic (PH) model. Dots represent sequences, i.e. all binary strings.

Dots with circles represent binary strings associated with compact

structures. Multiple circles indicate degenerate strings, i.e. strings

associated with more than one compact structure. In the PH model, the

energy of a sequence folded into a particular structure is the Hamming

distance between their binary strings. Hence the number of sequences

which fold uniquely to a particular structure—the designability of the

structure—is the set of vertices lying closer to that structure than to any

other, as indicated for one particular structure by the shaded region.
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binary strings. Most structures are found in dense regions,

i.e. in clusters of structures with similar patterns of surface

and core sites. Structures found in these crowded regions

have small exclusive volumes, and so, by definition, have

small designabilities. In fact, many groups of distinct

structures share an identical surface-core pattern (binary

string) and therefore have zero designability. In contrast, a

few structures fall in low-density regions, that is they have

unusual surface-core patterns, and so have large exclusive

volumes. These are the highly designable structures. In Fig.

3(a), we plot the number of structures nðdÞ at a Hamming

distance d from a structure with low, intermediate, and high

designability, respectively. It shows that both low- and high-

density neighborhoods typically have a large spatial extent,

reaching nearly halfway across the space of binary strings.

The geometrical representation of the PH model makes

clear the connection between thermal stability and desig-

nability. A sequence is considered to be thermally unstable

if it has a small or vanishing energy gap between its lowest-

energy structure and all other structures, and if there are

many such competing structures. In the PH model, the

energy of a sequence folded into a particular structure is the

distance between their binary strings. A sequence which

folds to a structure in a dense region (Fig. 2) will necessarily

lie close to many other structures, and will therefore have

many competing low-energy conformations. Even if the

sequence perfectly matches the structure, with hydrophobic

amino acids at all core sites and polar amino acids at all

surface sites, the high surrounding density of structures with

similar surface-core patterns implies a large number of

competing folds. This is the hallmark of thermal instability.

Therefore, the low-designability structures, which are found

in high-density regions, will have associated sequences

which are thermally unstable.

In contrast, if a sequence folds to a structure in a low-

density region, there will be relatively few nearby

structures, and so relatively few competing folds. These

sequences will be thermally stable. Therefore, the highly

designable structures, from low-density regions, will have

associated sequences of high thermal stability. This is the

designability principle in a nutshell—high designability and

thermal stability are connected because both arise from low-

density regions in the space of binary strings which

represent folded structures.

A measure of the ‘neighborhood density’ of structures

around a particular structure is the variance g of the quantity

nðdÞ shown in Fig. 3(a). The variance g is directly related to

the thermal stability—smaller g implies lower neighhood

density and hence higher thermal stability. In Fig. 3(b) we

plot this variance as a function of designability. It shows a

strong correlation between the designability and the thermal

stability.

Since low-energy competing structures also represent

kinetic traps, one expects the thermally stable sequences

associated with highly designable structures to be fast

folders as well. This has been tested for a lattice model

closely related to the PH model [15].

3. Miyazawa–Jernigan (MJ) matrix model

Natural proteins contain 20 amino acids, not two, and

their interactions are more complicated than simple

hydrophobic solvation. Some of these real-world features

are captured in the Miyazawa–Jernigan (MJ) matrix model.

The MJ matrix is a set of amino-acid interaction energies

inferred from the propensities of different types of amino

acids to be neighbors in natural folded structures [16]. The

model assigns the appropriate energy from the MJ matrix to

every pair of amino acids that are on neighboring lattice

sites, but are not adjacent (covalently bonded) on the chain,

as indicated in Fig. 4(a) [11]. Thus, in the model, a sequence

of length N is specified by the residue type mi; ði ¼

1; 2;…;NÞ along the chain, where m is one of the 20 natural

amino acids. A structure is specified by the position ri; ði ¼

1; 2;…;NÞ of each residue along the chain. The energy for a

sequence folded into a structure is taken to be the sum of the

contact energies, that is

E ¼
X

i,j

emimj
Dðri 2 rjÞ; ð3Þ

Fig. 3. (a) Number of neighboring structures nðdÞ versus distance d to

neighbors for three representative 6 £ 6 structures, with low (circles),

intermediate (triangles), and high (squares) designability. The distance

between structures is defined as the Hamming distance between their binary

strings. (b) Designability versus g; the variance of nðdÞ; for all 6 £ 6

structures.

N.S. Wingreen et al. / Polymer 45 (2004) 699–705 701



where emimj
is the contact energy (MJ matrix) between

residue types mi and mj; and Dðri 2 rjÞ ¼ 1 if ri and rj are

adjoining lattice sites with i and j not adjacent along the

chain, and Dðri 2 rjÞ ¼ 0 otherwise. In studies using the

MJ-matrix model, there are generally too many possible

sequences (20N) to enumerate, but the relative designabi-

lities of structures can be obtained accurately by random

sampling of sequences.

Fig. 5(a) shows a histogram of designability for

compact 6 £ 6 structures obtained using the MJ matrix of

interaction energies. The form of the distribution is very

similar to the PH-model histogram, including the tail of

highly designable structures (Fig. 1(b)). There is also a

strong correlation between thermal stability and desig-

nability in the MJ-matrix model [11]. For thermal

stability, one can use some measure of ‘neighborhood’

density of states. We find that in the MJ-matrix model,

the thermal stability of a sequence folded into a structure

is well correlated with the local energy gap [17] between

the lowest-energy structure and the next lowest. Fig. 5(b)

shows the energy gap averaged over sequences which

fold to structures of a given designability NS: With

increasing designability, there is a clear increase in the

average gap, and hence in the thermal stability of

associated sequences. The results of the MJ-matrix model

are very similar to those obtained with the PH-model.

Indeed, the same structures are found to be highly

designable in both models, including the same top

structure shown in Fig. 4(a). The most designable

3 £ 3 £ 3 structure is shown in Fig. 4(b). Qualitatively,

the results of the MJ-matrix model are the same for

three-dimensional structures (Fig. 6) as for two-dimen-

sional ones.

Why are the results of the purely hydrophobic model and

the Miyazawa–Jernigan-matrix model so similar? In fact,

both models are dominated by hydrophobic solvation

energies. The interaction energy between any two amino

acids i and j in the MJ matrix can be well approximated by

2ðhi þ hjÞ; where hi is an effective hydrophobicity for each

Fig. 4. (a) Most designable 6 £ 6 structure using 20 amino-acid types. Only

noncovalent nearest-neighbor interactions contribute to the energy, as

indicated by dashed lines for a few pairs. Interaction energies are taken

from the Miyazawa–Jernigan (MJ) matrix. (b) Most designable 3 £ 3 £ 3

structure using the same MJ-matrix energies.

Fig. 5. (a) Histogram of designability NS for the 6 £ 6 MJ-matrix model. (b)

Average gap versus designability for the 6 £ 6 MJ-matrix model. Data

obtained using 9,095,000 randomly chosen sequences.

Fig. 6. (a) Histogram of designability NS for the 3 £ 3 £ 3 MJ-matrix

model. (b) Average gap versus designability for the 3 £ 3 £ 3 MJ-matrix

model. Data obtained using 13,550,000 randomly chosen sequences.
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amino acid [18]. This implies that the energy of formation of

a noncovalent nearest-neighbor pair is simply the desolva-

tion energy of shielding one face of each amino acid from

the surrounding water. As a result, the MJ-matrix model can

be viewed as a variant of the PH-model in which there are

20 possible values of hydrophobicity instead of just two. An

additional distinction is that the MJ-matrix model has a

range of different site types (core, edge, and corner in two

dimensions; core, edge, face, and corner in three dimen-

sions) rather than just surface and core as in the PH model.

Overall, these differences are not enough to alter the basic

designability principle, or even to change the set of highly

designable 6 £ 6 structures.

For the MJ-matrix model, one can still construct a space

of structure strings, now including several levels of solvent

exposure between 0 (most exposed) and 1 (most buried). As

in the PH model, some regions of this space are dense with

structures and some have few structures. Structures with

similar surface-exposure strings compete for sequences. As

a result, structures in high-density regions have small basins

of attraction for sequences, and structures in low-density

regions have large basins. Moreover, sequences associated

with structures in low-density regions have few competing

conformations and are the most thermally stable. Therefore,

the designability principle holds in the MJ-matrix model for

the same reason it does in the PH model: high designability

and high thermal stability are connected because both arise

in low-density regions in the space of strings, i.e. the space

of surface-exposure patterns of structures.

Lattice–protein models in which hydrophobic solvation

does not dominate may show different behavior. For

example, Buchler and Goldstein reported results of a variant

of the MJ-matrix model in which the dominant hydrophobic

term 2ðhi þ hjÞ had been subtracted out [19]. They found a

set of highly designable structures different from that

obtained with the full MJ matrix, and similar to the set

obtained for a random pairing potential between amino

acids.

4. Off-lattice models

Natural proteins fold in three dimensions, and their main

degrees of freedom are bond rotations. Does the designa-

bility principle extend to off-lattice models with more

realistic degrees of freedom? One model for which

designability has been studied off-lattice is a 3-state

discrete-angle model, of the type introduced by Park and

Levitt [20]. The results strongly confirm the designability

principle, and suggest the possibility of creating new, highly

designable folds in the laboratory [10].

The main degrees of freedom of a protein backbone are

the dihedral angles f and c: Certain pairs of f–c angles are

preferred in natural structures, since they lead to conserved

secondary structures such as a-helices and b-strands [21].

Discrete-angle models for protein structure take advantage

of these preferences by allowing only certain combinations

of angles. For an m-pair model, the total number of

backbone structures grows as mN : With m ¼ 3; it is possible

to computationally enumerate all structures up to roughly

N ¼ 30 amino acids.

Fig. 7(a) shows an example of a protein backbone of

length N ¼ 23 generated using a 3-state model with

ðf;cÞ ¼ ð295; 135Þ; (275, 2 25), and (255, 2 55),

where the first pair of angles corresponds to a b-strand

and the second two correspond to variants of a-helices.

Structures are decorated with spheres representing side-

chains, as shown in Fig. 7(b). Only compact self-avoiding

structures are considered as possible protein folds.

To assess designability of these off-lattice structures, the

solvent-exposed area of each sidechain sphere is evaluated.

An energy of hydrophobic solvation is defined as in Eq. (1)

by E ¼ 2
PN

i¼1 sihi; where now si is the fractional exposure

to solvent of the ith sidechain, and the hi are amino-acid

hydrophobicities. Fig. 8(a) shows a histogram of designa-

bility for the 3-state model. There is a wide range of

designabilities, with a tail of very highly designable

structures. A strong correlation exists between the desig-

nability of a structure and the thermal stability of its

associated sequences, as shown in Fig. 8(b).

The designability principle evidently applies to the

3-state model as well as to the lattice models discussed

earlier. This is not surprising, because folding in the 3-state

model is also driven by hydrophobic solvation. Each

structure in the model is represented by a string of sidechain

solvent exposures, represented by real numbers between 0

and 1. Again, the space of these strings has high- and low-

density regions, with the, by now familiar, relation between

low density and high designability and thermal stability

leading to the designability principle.

A major advantage of the 3-state model is that it

addresses structures that a real polypeptide chain can adopt.

Among the highly designable folds, one recovers several

recognizable natural structures, including an a-turn-a fold

and a zincless zinc-finger. In addition, some of the highly

designable folds, including a b–a–b structure, have not

been observed in nature as independent domains. Results of

our effort to create this fold in the laboratory are

encouraging [22].

Fig. 7. (a) Example of a compact, self-avoiding 23-mer backbone generated

using three dihedral-angle pairs. (b) Backbone with generic sidechain

spheres centered on Ca positions.
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5. Discussion and conclusion

The designability principle has been explored in a

number of models for proteins, including all 20 amino

acids and realistic backbone conformations. In these

models, the strong link between designability and thermal

stability can be traced to the dominance of the hydrophobic

solvation energy. Whenever hydrophobicity is dominant,

each structure can be reduced to its pattern of solvent

exposure. In the same vein, each sequence can be reduced to

its pattern of hydrophobicity. Sequences will fold so as to

best match their hydrophobic residues to the buried sites of

structures. Both designability (number of sequences per

structure) and thermal stability depend on a competition

among structures with similar patterns of solvent exposure.

Highly designable structures are those with unusual patterns

of surface exposure, and therefore with few competitors.

This lack of competitors also implies that the sequences

folding to highly designable structures are thermally stable.

Since hydrophobicity is generally accepted to be the

dominant force for folding of real proteins, the designability

principle may provide a guide to understanding the selection

of natural protein structures. Of course, real proteins are

held together by forces other than hydrophobicity. Next to

hydrophobicity, the formation of hydrogen bonds is the

most important factor in determining how a typical protein

Fig. 8. (a) Histogram of designability for 23-mer off-lattice structures of the

type shown in Fig. (7). (b) Average energy gap (black dots) and largest

energy gap (red dots) versus designability. Data generated by enumeration

of all binary sequences.

Fig. 9. Four most designable four-helix bundles generated by packing tethered 15-residue a-helices. The helices are numbered at their N-terminals.
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folds. The backbone hydrogen bonds of a-helices and

b-sheets help stabilize particular folds. These secondary

structures can be incorporated within the framework of

designability as a favorable energy bias for formation of

a-helices and b-sheets.

One way to incorporate hydrogen bonding in the design

of new protein folds is to specify in advance the secondary

structure of the protein. This approach has the added

advantage of greatly reducing the number of degrees of

freedom. The desired secondary structures can be designed

into the sequence via the propensities of particular amino

acids to form a-helices and b-strands.

This approach to design was recently carried out for four-

helix bundles [12]. Compact, self-avoiding structures

consisting of four tethered 15-residue a-helices were

generated and assessed for designability. Fig. 9 shows the

four most designable distinct folds, which closely corre-

spond to natural four-helix bundles. As shown in Fig. 10, the

histogram of designability for the four-helix model has the

characteristic long tail of highly designable structures.

The principle of designability has been motivated here in

terms of hydrophobic solvation. More generally, the

dependence of both designability and thermal stability on

a competition among structures broadens the application of

the principle. For example, designability and thermal

stability have been found to correlate in nonsolvation

models including random-interaction models [19] and

folding of two-letter RNA [23]. In the future, we hope

that designability will provide a guide to the design of new

structures both for polymers other than proteins and for

solvents other than water.

Acknowledgements

We gratefully acknowledge the contributions of many

coworkers in developing the notion of designability, in

particular Eldon Emberly, Robert Helling, Régis Mélin,
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