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The regulation of gene expression is, in large part, mediated by interplay between the general
transcription factors (GTFs) that function to bring about the expression of many genes and site-
specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the
epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic
interactions, both negative (aggravating) and positive (alleviating), between and among genes
encoding STFs and GTFs in Saccharomyces cerevisiae. This allowed us to both reconstruct regulatory
models for specific subsets of transcription factors and identify global epistatic patterns. Overall,
there was a much stronger preference for negative relative to positive genetic interactions among
STFs than there was among GTFs. Negative genetic interactions, which often identify factors
working in non-essential, redundant pathways, were also enriched for pairs of STFs that co-regulate
similar sets of genes. Microarray analysis demonstrated that pairs of STFs that display negative
genetic interactions regulate gene expression in an independent rather than coordinated manner.
Collectively, these data suggest that parallel/compensating relationships between regulators, rather
than linear pathways, often characterize transcriptional circuits.
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Introduction

Our current understanding of transcriptional regulation
encompasses dozens of proteins cooperating to control
gene expression (Komili and Silver, 2008). In eukaryotes, the
interaction of the RNA polymerase II machinery with
individual genes involves recognition of DNA elements by
sequence-specific factors that, in turn, cooperate with the
general transcriptional apparatus to facilitate expression of
particular transcripts. Because of its importance for biology
and disease, considerable effort has been made to characterize
the patterns of gene expression in different cells and in
different physiological conditions. Analyses of mRNA levels
using hybridization to microarrays (DeRisi and Iyer, 1999)
and the DNA sequences associated with sequence-specific
transcription factors (STFs) using ChIP-chip (Lee et al, 2002;
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Bulyk, 2006) or ChIP-Seq technologies (Johnson et al, 2007;
Robertson et al, 2007) have together provided great insight into
gene regulation. Furthermore, there has been systematic effort
to characterize transcription factor DNA-binding profiles
in vitro (Badis et al, 2008, 2009; Berger and Bulyk, 2009).
However, a complete description of how the transcription
machinery engages with the genetic material to produce the
appropriate repertoire of expressed mRNAs awaits improved
knowledge of how individual components of the transcrip-
tional machinery operate together.

In order to gain a better understanding of the functional
relationships between components of the general transcrip-
tional machinery and sequence-specific DNA-binding tran-
scription factors, we used synthetic genetic array (SGA)
technology (Tong et al, 2001) to generate an epistatic miniarray
profile (E-MAP) (Schuldiner et al, 2005; Collins et al, 2007;
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Roguev et al, 2008; Fiedler et al, 2009) that contains the
majority of predicted STFs and a representative collection of
the general transcription factors (GTFs) in Saccharomyces
cerevisiae. E-MAPs comprehensively describe the genetic
interactions between pairs of mutations within a defined
subset of genes in a quantitative manner. Our E-MAP approach
allows for the identification of both negative (aggravating or
synthetic sick/lethal) and positive (alleviating) interactions
(Beltrao et al, 2010). Positive genetic interactions generally
correspond to situations where the double mutant is healthier
(suppression) or no sicker than the more defective single
mutant. Previous work has demonstrated that the negative
interactions often identify pairs of genes functioning in non-
essential, redundant, or compensatory pathways (Guarente,
1993; Kelley and Ideker, 2005), whereas positive ones are
enriched for factors that function in the same pathway and are
often physically associated (Collins et al, 2007; Roguev et al,
2008; Aguilar et al, 2010). Here, we have used the E-MAP
approach to genetically interrogate the set of STFs as well as a
large set of GTFs in S. cerevisiae. Analyzing the genetic
relationships between and among STFs and GTFs has shed
insight on the global organization of the transcriptional
machinery as well as provided detailed information on the
functional relationships between individual factors.

Results

In this study, we have genetically targeted the STFs, a set of
proteins that impinge on virtually all aspects of cellular
physiology. By generating double mutants for 151 predicted
STFs, as well as 172 components of the general transcriptional
machinery (e.g. TFIIF, RNA polymerase II, Mediator) and
various chromatin modifiers (e.g. COMPASS, Rpd3C(L),
NuA4) and remodelers (e.g. RSC, SWI/SNF) (for a complete
list of genes, see Supplementary Table 1), we collected genetic
interaction data for 48391 pairs of genes (Supplementary
Dataset 1). Our experimental methodology and subsequent
analyses were performed as previously described (Collins et al,
2006; Schuldiner et al, 2006), and all raw and processed data
are available online (http://interactome-cmp.ucsf.edu).

Global epistatic relationships within the
transcriptional apparatus

An E-MAP produces at least two types of observations. First, a
quantitative measure of the strength of the interaction, negative
or positive, for each individual pair of genes is obtained and,
second, the pattern of these interactions for each of the genes
serves as a high-resolution phenotype. We used hierarchical
clustering to group genes with similar epistasis patterns, subject
to the constraint that the STF and GTF genes were clustered
separately (Figure 1A). In this way, global epistasis patterns
within and between the STF and GTF could be studied.
Immediately noticeable is the relative lack of genetic
interactions among the STFs (Figure 1A, quadrant I) compared
with the more abundant interactions among the GTFs
(quadrant III) and between STFs and GTFs (quadrant II).
It appears that a given STF is more likely to interact genetically
with a GTF than with another STF (Figure 1B), even
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after considering the fact that we included within the
E-MAP approximately equal numbers of GTFs and STFs
(Supplementary Table 1). Furthermore, the ratio of negative
(S-score<< —2.5) to positive (S-score>2.5) genetic interactions
(Collins et al, 2006) observed within the set of STFs is
significantly higher than that seen in the set containing STF-
GTF pairs (Figure 1A and C; see Materials and methods for
data processing). As negative genetic interactions can identify
genes functioning in separate, parallel pathways and positive
interactions often identify factors that function in the same
linear pathway or as a complex (Tong et al, 2004; Schuldiner
et al, 2005; Kelley and Ideker, 2005; Collins et al, 2007), the
majority of STFs would appear to most often act in a redundant
manner. In contrast, significantly more positive genetic
interactions were observed among gtfAstfA double mutants
(Figure 1C), suggesting that STFs often work together with the
general transcriptional apparatus. The ratio of positive to
negative interactions among STF gene pairs is also signifi-
cantly lower than observed for genes in previous E-MAPs
(Schuldiner et al, 2005; Collins et al, 2007) (Figure 1C),
suggesting that the genetic architecture we observe among
STFs is unlike those in other biochemical processes. In fact, we
have recently demonstrated that there is a significant enrich-
ment of positive interactions within the signaling machinery
(kinases and phosphatases (Fiedler et al, 2009)) (Figure 1C;
Supplementary Table 2). This suggests that kinases and
phosphatases, unlike STFs, often work in linear pathways or
in a coordinated manner.

Inspection of quadrant III revealed that components of
coherently acting complexes are clustered next to each other,
suggesting that, in general, the data set is of high quality
(Supplementary Figure 1). As a further assessment of the
quality of the data, we used a recently described, independent
methodology involving the measurement of relative growth
rate using flow cytometry (Breslow et al, 2008) to confirm
a subset of interactions derived using colony size as a
phenotypic readout. We have randomly chosen a similar
number of pairs from those with positive/negative/neutral
genetic interactions; most of the genetic interactions that were
chosen had not been reported before (see Materials
and methods). We find that overall 54% (P-value=0.0007
with Fisher’s exact test, 40%/43%/83 % if considering only
positive/negative/neutral interactions, respectively) of the
genetic interactions we identified with the E-MAP approach
are consistent with the genetic interaction calculated from
the relative growth rates measured with flow cytometry
(Supplementary Tables 3 and 4). We argue that many of the
interactions that were not confirmed may be related to the
growth differences of yeast on agar plates (E-MAP) compared
with liquid environment (with flow cytometry). Figure 2
provides network views of the negative and positive genetic
interactions among the STFs (A, B) and between STFs and the
GTF protein complexes (C, D).

Epistatic relationships reveal underlying
regulatory architectures

In addition to providing an overview of the global relationships
among TFs, the fine structure of the E-MAP can be used to
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Figure 1  Site-specific and general transcription factors evoke distinct patterns of epistasis. (A) Genes were segregated into site-specific (STF) or general (GTF)
transcription factor classes and clustered based on their quantitative epistatic interaction profiles. Quadrants I, II, and Il represent the STF-STF, STF-GTF, and
GTF-GTF classes, respectively. The intensity of yellow and blue indicates the strength of positive and negative interactions, respectively. Individual interactions between
components of the INO80-C and RPD3-C-(L) chromatin remodeling complexes and selected STFs are shown (bottom left). (B) A density plot shows a preference for
STFs to display significant genetic interactions with GTFs compared with other STFs. Each point on the plot represents a single STF or groups of STFs with identical
interaction frequency. (C) The ratio of negative (S-score <—2.5) to positive interactions (S-score >2.5) for the set of genes in quadrant | is significantly greater
(P=0.0068) than that for quadrant Il and even more significant when compared with the data from E-MAPs focusing on the early secretory pathway (ESP) (Schuldiner
et al, 2005) (P< 1079, chromosome biology (Collins et al, 2007) (P<10~%), and signaling (Fiedler et al, 2009) (P<10~29).
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Figure 2 Network representation of genetic interactions between and among STFs and GTFs. STFs linked to each other by negative (A) or positive (B) interactions,
and to GTF complexes by negative (C) or positive (D) interactions are shown. Red, blue, and green shading indicate activating and repressing gene products, or GTF
protein complexes, respectively. The sizes of the green nodes corresponding to the GTFs correlate with the number of components of the complex that were genetically
analyzed. The thickness of the line corresponds to the strength of the interaction. See http://interactome-cmp.ucsf.edu for a list of all interactions. Source data is available

for this figure at www.nature.com/msb.

address the nature of the regulatory architecture controlling
individual genes. A variety of regulatory patterns have been
described that serve the differing functional requirements of
various biological processes (Istrail and Davidson, 2005).
Frequently, one TF represses the function of another, which is
normally involved in gene activation (Figure 3A-1). Alterna-
tively, two different TFs may function together in a coordi-
nated manner (Figure 3A-2) or act redundantly to regulate a set
of genes (Figure 3A-3). Our E-MAP identified examples of each
of these types of relationships.

Under nitrogen-rich conditions, the GATA family transcrip-
tional activators, GIn3 and Gat1, are known to form individual
complexes with the repressor Ure2, localizing them to the
cytoplasm and decreasing nitrogen catabolite repression (NCR)-
sensitive gene expression (Cooper, 2002) (Figure 3B, upper
panel). Deletion of UREZ allows GIn3 and Gat1 to be recruited to
the nucleus, where they activate the NCR genes, an event that is
detrimental to overall cell growth in rich media. Therefore,
deletion of either GIn3 or Gatl in a ure2A background could
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overcome the growth defect, resulting in a suppressive genetic
relationship. Indeed, these are the exact patterns we observe in
the E-MAP (Figure 3B, lower panel), as has been observed
previously (Courchesne and Magasanik, 1988; Cunningham
et al, 2000). Interestingly, gln3AgatIA results in a significant
negative genetic interaction (Soussi-Boudekou and Andre, 1999;
Crespo et al, 2001; Schmelzle et al, 2004), even in nitrogen-rich
conditions, potentially implying that trace amounts of these
factors localize to and are functional in the nucleus. Regardless,
this latter interaction represents an ‘independent activation’
relationship between two distinct STFs (Figure 3A-3).

One of the most studied yeast transcriptional regulatory
systems involves the GAL genes required for growth when
galactose is used as the carbon source (Traven et al, 2000).
In the presence of a carbon source other than galactose, Gal80
is known to bind to and inactivate Gal4, an activator required
for expression of the GAL genes involved in metabolizing
galactose (an example of scenario (1), Figure 3A). It has
been shown previously that deletion of GAL4 suppresses the
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Figure 3 Epistatic patterns underlie local regulatory architectures. Three alternative regulatory modules involving a pair of gene products (X and Y) are shown in (A),
where X represses the activator Y (1), X and Y cooperate to activate gene expression (2), and X and Y act in parallel/redundantly (3). In the simplified language of
Boolean logic, these are indicated by ‘AND’ and ‘OR’ relationships. Examples of these behaviors involving regulation of nitrogen catabolism (B) and galactose
metabolism (C) are shown. See text for a detailed interpretation of the individual interactions.

slow-growth phenotype associated with gal80A (Ideker et al,
2001), probably by preventing unnecessary, wasteful activa-
tion of the galactose genes, and this is a relationship we
successfully detected in our E-MAP (Figure 3C). Additional
factors that inhibit the function of Gal4 in the presence of
glucose could, in theory, display negative genetic interactions
with Gal80. The Gal80-dependent repression of Gal4 also
requires the histone methyltransferase Set2 (Landry et al,
2003), and we also found a significantly negative genetic
interaction between GAL80 and SET2 (S-score=-—3.8, see
http://interactome-cmp.ucsf.edu). In addition, the histone
H2A variant, Htzl, has been shown to be required for the
efficient activation of the GAL genes (Adam et al, 2001). HTZ1,
along with components of the SWR-C complex, which
incorporates Htzl into chromatin (Korber and Horz, 2004),
also displayed positive genetic interactions with GALSO0.
Therefore, overcoming the deleterious effects of gal80A can
be achieved by removing either Gal4 or factors required for it
to function (i.e. Htzl and SWR-C). This would represent a
situation where Gal4 and SWR-C/Htzl are acting in a
coordinated manner (Figure 3A-2). We did not detect an
interaction between GAL4 and HTZI (or SWR-C) in the
medium we used lacking galactose as Gal4 is not functional
in these circumstances, but one would predict that the double
mutants would exhibit a positive genetic interaction in the
presence of galactose. Similarly, in the presence of galactose,
the positive genetic interaction between Gal4 and Gal80
should not be observed, as Gal80 is not functional. However,
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we did detect positive interactions between SWR-C and Htz1
in the absence of galactose (Figure 3C), arguing that these
proteins function in a Gal4-independent manner, consistent
with studies showing that Htz1 is recruited to the promoters of
many genes (Raisner et al, 2005; Zhang et al, 2005).

Several cases where STFs and GTFs work in a coordinated
manner (Figure 3A-2) have been described previously, and
these connections often manifest themselves as positive
genetic interactions in this E-MAP. For example, it was
previously reported that the histone deacetylase (HDAC)
Rpd3, and its physical partner Sin3, work together with the
STF Hacl to regulate expression of the early meiotic genes
(Schroder et al, 2004). Rpd3 and Sin3 are, in fact, both
components of two distinct complexes, large Rpd3C(L) and
small Rpd3C(S) (Carrozza et al, 2005; Keogh et al, 2005), but
the E-MAP only revealed positive genetic interactions between
Hacl and the larger Rpd3-containing complex, implying that
this STF functions only with Rpd3C(L). Bas1 and Arg80, STFs
responsible for the regulation of histidine (Pellman et al, 1990)
and arginine biosynthesis (Messenguy, 1976), respectively,
also shared positive genetic interactions with Rpd3C(L)
(Figure 2D), suggesting that they also work together with this
HDAC. Although we have emphasized the global epistatic
trends within the transcriptional apparatus in this study, there
remains a wealth of mechanistic insight that can be mined
from the individual interactions for each gene. We have
deposited the raw and processed data on a searchable and
interactive website (http://interactome-cmp.ucsf.edu), which
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also allows the data from this study to be integrated and compared
with other genetic and protein—protein interaction data sets.

STFs regulating similar sets of genes display
negative genetic interactions

We also explored the general regulatory logic in yeast by
combining our genetic interaction data with the information
about the network connections between STFs and their
targets. It has been observed that many promoters have
binding sites for several different STFs, suggesting that
multiple inputs converge at these promoters to control gene
expression (Zhu and Zhang, 1999; Chin et al, 2005). It has also
been argued that, based on simple biophysical models,
essentially any complex regulatory logic can be achieved by
appropriately adjusting the relative positioning and strength of
the STF-binding sites (Buchler et al, 2003). Given the complex
structures of promoters and the possible types of regulatory
logic, what types of logic are used in nature? We examined this
issue by focusing on pairs of STFs that share a set of targets
(Figure 4A). These pairs were identified by using published

genome-wide ChIP-chip data that physically link yeast
transcription factors to their cognate genes (Harbison et al,
2004; Maclsaac et al, 2006). A total of 110 STF gene pairs were
identified that have statistically significant target overlap with
a P-value <0.005, whereas 49 pairs have significant overlap at
a more stringent cutoff (P< 1077). Regardless of the cutoff, we
found that STF pairs with overlapping targets are enriched for
negative genetic interactions compared with random STF-STF
gene pairs. Among the 49 STF pairs displaying the more
significant overlap, 10 display strongly negative genetic
interactions (with an enrichment P<1 x 10~°) in the one type
of growth condition we have used (Figure 4B). None of these
overlapping STFs displayed positive genetic interactions.
These observations suggest that compensating/redundant
regulation by STF pairs is a dominant mode of regulation. As
these pairs of STFs directly regulate the same set of targets and
are mostly activators, one interpretation is that they act in an
independent activation mode (Figure 3A-3) compared with
one that involves coordinated regulation (Figure 3A-2).
Examination of various overlapping pairs having negative
genetic interactions further supports the idea that they act in a
redundant/compensating way. For example, Swi4 and Swi6,

A ® ®
Gene 1 Gene 2 Gene 3
B Negative
interactions
P-value Number of enrichment
Total pairs Total pairs  genetic interactions P-value
Positive  Negative
110 5x1073 0 15 8x1077
69 1x107° 0 11 6x107
49 1x10~7 0 10 2x1078
C Predicted Predicted
TF1 TF2 Gl targets for TF1_targets for TF2 Overlap P-value
SWi4 SWI6 102 113 68 9E-98
SWi4 STB1 102 23 20 1E—29
CBF1 TYE7 169 39 24 2E-24
MET32 MET31 19 24 11 2E-19
YAP6 PHD1 56 81 15 1E-08
SWi4 MBP1 102 111 42 1E-08
SWi4 SKN7 102 118 22 2E-08
SUT1 YAP6 55 56 17 2E-08
SKN7 SWIi6 118 113 21 3E-08
SWi4 SPT2 102 25 10 4E-08
MSN2 SKN7 67 118 13 3E-06
STB1 PHD1 23 81 6 3E-03
GCR2 TYE7 42 39 6 2E-03
CBF1 MET31 169 24 8 1E-03
SKN7 GLN3 118 45 9 1E-03
5 -4-3-2-1012 3 45
[ D
Negative Positive

interactions

interactions

Figure 4 STFs that regulate similar sets of genes display negative genetic interactions. The number of occurrences of such architectures (A) are tabulated (B), and

specific examples indicated (C). (B) Usin;;
P-value thresholds (0.005, 107>, and 10~ ")

previously reported target predictions (Maclsaac et al, 2006) from ChIP-chip data (Harbison et al, 2004), three different
(based on significant target overlap) were applied for each pair of transcription factors. The number of significantly negative

(< —2.5) and positive (>2.5) genetic interactions, as well as the statistical enrichment for negative interactions, is listed for each set. (C) The 15 pairs of STFs that
shared a significant overlap of target genes (0.005) and displayed negative genetic interactions are tabulated.
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the two components of the SBF complex that cooperates with
Mbpl to activate transcription of G1-specific and DNA repair
genes, are predicted to regulate 68 genes in common (Harbison
et al, 2004; Maclsaac et al, 2006) (Figure 4C). Swi4, which
is involved in the expression of 20/23 genes associated
with Stbl (Harbison et al, 2004; Maclsaac et al, 2006), also
showed strong negative interactions with stb1A. Similarly, the
related (46% amino-acid identity) MET31 and MET32 genes,
which displayed a significantly negative genetic interaction
(Figure 4C), interact individually with the Cbflp-Met4p-
Met28p complex to induce the expression of biosynthetic
enzymes for sulfur-containing amino acids (Blaiseau et al,
1997). It is worth noting that the Met31/Met32 pair is the only
example in the set of co-regulating STF pairs that result from a
gene duplication event. The relative paucity of this type of
interaction between STF pairs suggests that the redundancy in
regulation is not a trivial consequence of gene duplication, but
rather a regulatory organization selected by evolution.

To further test the model that STFs act more often to regulate
their common targets in a redundant manner, we carried out
gene expression profiling on four sets of double mutants (and
corresponding single mutants; Supplementary Table 5), with
negative interactions that were confirmed by measuring
growth rates in liquid culture (Supplementary Tables 6 and 7).
We found that the number of genes changed in double-mutant
strains is much larger than the number of genes that changed
in corresponding single mutants (Supplementary Figure 2),
which is consistent with the fact that these double mutants
have more severe growth phenotypes. Two of the four pairs
(swid-skn7 and gcr2-tye7) displayed a pattern of gene
expression and growth phenotypes that are suggestive of a
specific mode of regulation: one factor acts as a major
regulator and the other acts as a minor regulator or serves as
a backup. In each case, the growth rate of one of the single-
deletion mutants is significantly reduced (i.e. ‘the major
regulator’), whereas the growth rate of the other single-
deletion mutant is similar to that of the wild type (i.e. ‘the
minor regulator’). In the absence of the major regulator, the
deletion of the minor regulator leads to a more severe growth
defect, resulting in a negative genetic interaction (Figure 5A).
Thus, the function of the minor regulator becomes more
important in the absence of the major regulator. In accordance
with the growth phenotypes, the global gene expression
change observed in the double deletion is better correlated
with that of the single deletion of the major regulator
(Figure 5B). To examine the response of the common targets
of the two factors, we used the genome-wide transcription
factor occupancy data from Yeast TransfactomeDB (Foat et al,
2008) to define the potential target genes. In each case, we
found that genes predicted to be directly regulated by both TFs
are enriched in the set of genes that significantly change
expression in the double mutant but not in either of the single
mutants (Supplementary Table 8). No common targets were
found in the set of genes that significantly change expression in
all three mutants (Figure 5C). Thus, we found an enrichment
of common target genes displaying ‘OR’ but not ‘AND’
behavior, in the simplified language of Boolean logic.
Examination of the targets revealed that many of them are
induced/repressed more by the double deletion than by each
of the single deletions (Figure 5D). These results suggest that
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negative interactions of swid-skn7 and ger2-tye7. (B) Gene expression of
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with more severe growth defect (Log2 fold change values compared with wild-
type were plotted). (C) The number of genes with expression level changed
significantly in double mutants and corresponding single mutants. The numbers
in the parenthesis indicated the number of common target genes within the
corresponding set of genes. (D) Examples of genes regulated by two
transcription factors with an ‘OR’ gate. The left panel shows the promoters
with TF-binding sites indicated by the boxes. The right panel shows gene
expression change in the single and double mutants. The numbers indicate
expression level relative to the wild type. Length of the bar is proportion to the
difference between the mutant and wild type. Green bars indicate that the
expression levels of the corresponding genes are lower than the wild type,
whereas red bars indicate higher gene expression levels.
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frequently TF pairs with negative interactions regulate the
transcription of their common genes in a redundant manner.
The other two TF pairs displayed weaker growth phenotypes
and weaker genetic interactions, and the pattern of gene
expression is not as clear. In these two cases, we have
not observed enrichment of common targets in gene sets
displaying either ‘OR’ or ‘AND’ behavior. This points to
the complexity of genetic interaction and suggests that no
single mechanism will be able to explain all the observed
interactions.

The mechanism for generating genetic interactions between
a pair of TFs can be quite complicated and TF specific, as a pair
of TFs may each regulate a number of genes that themselves
display strong interactions. To investigate the possibility that
the interaction between a pair of TFs is caused indirectly by the
interaction(s) between their downstream targets, we have
analyzed the genetic interactions of the predicted targets for
each pair of TFs using all our E-MAP data. We found that for
almost all of the TF pairs with strong genetic interaction, there
is no enrichment of genetic interactions between their targets
(Supplementary Figure 3). For example, although 47.5% of the
TF pairs displaying significant negative genetic interactions
have at least one pair of targets that display a stronger negative
interaction, this is actually lower than what is observed (58 %)
when the data are randomized (keeping the number of targets
the same for each TF). Collectively, this argues that indirect
effects of the downstream targets cannot be the main
explanation for the large number of observed interactions
between TFs.

Discussion

Previously, genomic approaches to transcriptional regulation
have mainly focused on establishing connections between TFs
and their targets, for example, by systematic ChIP-chip, TF
deletion/overexpression profiling (Harbison et al, 2004; Chua
etal, 2006; Hu et al, 2007), or by in vitro characterization of the
DNA-binding profile of TFs (Badis et al, 2008, 2009; Berger and
Bulyk, 2009). Quantitative genetic data provide complemen-
tary information as they describe functional relationships
among TFs. A challenging task is to systematically reconstruct
the regulatory circuits, inferring both connections and the
input/output relationships. Given that the cellular regulatory
networks could be quite complex due to possible regulatory
cascades, the involvement of both activators and repressors,
and the possibilities of various types of input/output relationships
with multiple inputs, it is likely that more than one model will
be consistent with the observed genetic interaction patterns.
Thus, it is important to integrate other sources of information,
such as the wiring diagrams and prior knowledge of the
functions and regulation of the proteins involved, and to
impose physical constraints on what can be implemented at
the molecular level. We have demonstrated that this integrated
approach enables us to explore the principles of global and
local organization of the transcriptional apparatus in budding
yeast. In particular, we have illustrated this approach by
analyzing pairs of STFs that co-regulate the same sets of genes.

One intriguing observation from this study is that STF pairs
sharing regulatory targets predominantly exhibit negative
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genetic interaction, and gene expression profiling of the TF
mutants indicate that quite often such pairs regulate their
target genes in a redundant manner. Could this be a general
principle of regulatory design? Although we have grown yeast
in only one set of conditions, there is no particular reason to
believe that additional genetic interactions observed in
different environmental conditions would alter the balance
of the types of regulatory logic that are observed. Previous
studies on the evolution of transcriptional circuits suggest that
transition through an intermediate with redundant regulation
may be a general mechanism to achieve large-scale rewiring
without having to cross huge fitness barriers (Tanay et al,
2005; Tsong et al, 2006). Genome-wide analysis of the binding
site patterns in yeast promoters also provides evidence that
novel binding sites tend to appear in specific promoters that
are already associated with multiple sites (Bilu and Barkai,
2005), consistent with the interpretation that redundant
regulation through multiple sites makes the promoter more
evolvable.

Although ChIP-chip analyses had been used to infer
regulatory hierarchies for the STFs of S. cerevisiae (Lee et al,
2002; Harbison et al, 2004), such cascades appeared to have a
relatively minor effect in cell growth under the condition we
studied. We have systematically analyzed STF pairs with a
regulator-target relationship (STF1 directly regulates STF2,
derived from previously reported target predictions (MaclIsaac
et al, 2006) using ChIP-chip data (Harbison et al, 2004)) and
found no enrichment of either positive or negative genetic
interactions (see Supplementary Table 9; Supplementary
Figure 4). Microarray analyses of gene expression in STF-
deletion strains (Hu et al, 2007) also indicated that regulation
through extended cascades involving STFs may be relatively
rare.

Certain global network features of this transcription factor
E-MAP, such as overall interaction density and the ratio of
positive-to-negative interactions, are significantly different
from those observed in previous E-MAPs (Schuldiner et al,
2005; Collins et al, 2007; Fiedler et al, 2009). For example, we
have recently carried out a genetic study of the signaling
apparatus (i.e. kinases/phosphatases) and observe the oppo-
site trend we see with the STFs, that is an enrichment of
positive over negative genetic interactions (Fiedler et al, 2009).
Based on this, we argue that, unlike STFs, enzymes that
regulate phosphorylation more often function in linear path-
ways or in a coordinated manner. Although negative genetic
interactions are often observed with factors working in the
same pathway when it is essential in nature (Wilmes et al,
2008), the majority of kinases, phosphatases, and TFs are non-
essential, suggesting our interpretations are appropriate. It will
be of great interest to determine whether the striking difference
in the genetic architecture within the signaling apparatus and
the transcriptional machinery is evolutionarily conserved and
to fully characterize the genetic relationship between these
two unique sets of genes. Comparison of different E-MAPs
suggests that functionally distinct subnetworks are subject to
alternative regulatory arrangements that best serve their
purpose in the cell. For example, the cell cycle apparatus is
largely responsible for ensuring that conditions are favorable
for the cell to progress through successive steps of the cell
division cycle. Thus, go/no-go decision points (checkpoints)
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largely define a linear sequence of events. Such an arrange-
ment would be expected to result in increased occurrence of
positive epistatic interactions, because these reflect shared
linear pathways or protein complexes operating within the
same pathway. Transcriptional responses, in contrast, are
more likely to be modified by external environmental
conditions, with different STFs driving gene expression in
different directions that all contribute to the cell’s fitness, a
situation expected to result in increased numbers of negative
epistatic interactions among STFs, just as we observed in this
study.

These observations may be especially apparent among
budding yeast STFs, because these organisms need to respond
sensitively and rapidly to changing nutritional conditions (e.g.
between oxidative and fermentative metabolism) (Johnston,
1999). The map of epistatic interactions we generated should
not be static: within a single organism, the nature (magnitude
and polarity) of the genetic interactions should be dependent
on the particular environmental conditions. Furthermore,
other organisms may show different patterns of epistatic
interaction among their STFs, as transcription network
rewiring is a quite general phenomenon (Tuch et al, 2008).
Indeed, our preliminary comparative analysis between S.
cerevisiae and an evolutionary distinct yeast species Schizo-
saccharomyces pombe (Roguev et al, 2008; Beltrao et al, 2009)
indicates that GTF-GTF interactions are much more conserved
than STF-STF interactions and, despite the changes, the
general observation that STF pairs are more likely to interact
negatively holds true for both species (unpublished data).
Therefore, quantitative genetic profiling has considerable
potential for the discovery of conserved/species-specific and
environment-dependent interactions between genes and path-
ways. It will be very interesting and challenging to extend the
E-MAP approach to metazoans, where sequence analyses
indicate that functional enhancer elements often have clusters
of binding sites of different TFs, which lead to the suggestion
that cooperative binding of TFs are required for function.
There, the pattern of genetic interaction may show a striking
difference from what is observed in yeast.

Materials and methods
E-MAP analyses

The genetic interaction map was generated and analyzed as previously
described, and an interaction score (S-score) is calculated for each pair
of factors (Schuldiner et al, 2005, 2006; Collins et al, 2006, 2007). See
Supplementary Table 1 and http://interactome-cmp.ucsf.edu for a
complete list of genes analyzed and the raw and the processed data. To
generate the network diagrams in Figure 2, we define a score between a
STF and a GTF complex as S, = Zfﬁlsi/Nc, where S; is the S-score
between the ith component of the complex and the STF, and N, is the
number of the components of the complex (for the components of
different GTF complexes, see Supplementary Table 10).

To link a STF with a GTF complex in Figure 2C, the S-scores between
the STF and all the components of the GTF are required to be <—4.0.
For positive interaction links in Figure 2D, we require that S.> 2.0 and
that at least 60 % of the components of the complex have S-scores >1.5
with the STF.

The statistical significance of the enrichment of negative genetic
interaction relative to positive interaction in Quadrant I (STF-STF) is
calculated by contrasting to Quadrant II (STF-GTF) and previous
E-MAP data for the early secretory pathway (Schuldiner et al, 2005),
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chromosome biology (Collins et al, 2007) and the signaling machinery
(Fiedler et al, 2009) (Figure 1; Supplementary Table 2). P-values were
computed using binomial distribution.

Identifying STFs with overlapping targets

To identify pairs of STFs with overlapping targets (and define the
regulator-target relationship in Supplementary Table 9 and Supple-
mentary Figures 3 and 4), we use the STF-binding sites and target
predictions from the analyses by Maclsaac et al (2006) of the genome-
wide ChIP-chip data (Lee et al, 2002; Harbison et al, 2004). Given two
transcription factors X and Y, the number of genes co-regulated by both
transcription factors N, is counted. A P-value for the significance
of the overlap between the target genes is calculated based on
hypergeometric distribution (with Bonferroni correction):

e () ()
min(Ny,Ny k N, — k
R SR A L
=)
y

where N, and N;, are the number of target genes for X and Y, N is the
total number of ORFs in the yeast genome, and Np,;, is the total number
of STF pairs (for Bonferroni correction). Given a cutoff peyofs, STF pairs
With Povertap <Peutott are selected. We show that negative interactions
are further enriched in the STF pairs with overlapping targets
compared with general STF pairs. A P-value for the enrichment is
calculated based on hypergeometric distribution:
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where m is the number of negative interactions within the selected
pairs N, N, is the total number of STF pairs with a valid S-score, and N,,
is the total number of negative interactions within N; pairs.

XNpair-,

Confirmation of genetic interactions by
quantitative growth rate measurements using a
flow cytometer-based competition growth assay

To confirm the genetic interactions derived from colony growth assay
with an independent approach, we quantitatively measure the growth
rates of the single and double mutants using a flow cytometer-based
competitive growth assay described previously by Breslow et al
(2008). To select the pairs for the growth assay, the genetic interactions
were first divided into three groups: positive, neutral, and negative.
We then randomly chose approximately 30 pairs from each group, with
a bias toward genes with more interactions, to reduce the number of
single mutants to measure. This way, we picked about 100 double-
deletion strains involving about 80 genes that cover a similar number
of positive, negative, and neutral interactions. Such selection allowed
us to measure the growth rate of single- and double-deletion strains
together in a 384-well plate with two replicates for each strain. The
RFP—tag%ed wild-type strain, the wild-type strains bearing the Kan®
or NAT"-GFP markers integrated at the his3A1 locus (Breslow
et al, 2008) and pFA6a-TEF2Pr-eGFP-ADH1-Primer-NATMX4 plasmid
were obtained from the authors. GFP-tagged SGA-compatible MATo
single-mutant NAT® strains were constructed by replacement of the
gene of interest with the NAT®-GFP cassette. The resulting strains were
then crossed with BY4741-derived MATa single-mutant Kan® strains to
generate GFP-tagged double-mutant deletion strains. To measure the
growth rate of the strains with appropriate single deletions for genetic
interactions calculation, isogenic single-mutant strains were generated
by crossing the same Kan® and NAT®-GFP marked single gene deletion
strains with appropriate wild-type strains bearing the Kan® or NAT®-
GFP markers integrated at the his3AI locus (Breslow et al, 2008).
Each mutant strain has two independent replicates. All strains were
arrayed into one 384-well plate for competitive growth with the wild-
type strain. Relative growth rates were measured using the method
described previously (Breslow et al, 2008) (also see Supplementary
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Figure 5). Relative variance of the growth rate was calculated from the
two replicates

o |Wii — Wa|
(Wi + Wy)/2

(W;; and Wy, are the growth rates of the two replicates of mutant strain
i relative to the wild-type strain). Strains with large relative variance
(0;>0.05) were removed from the analysis. The mean relative
growth rates were then calculated for the rest of mutant strains:
W=(Wy +Wy)/2. The genetic interaction is defined as
e=Wag— W, x Wy and is compared with the S-score from our EMAP
data (see Supplementary Tables 3 and 4). £€>0.04 and < —0.04 were
used to define the positive/negative interactions, respectively. Pairs
with —0.04 <€<0.04 were regarded as showing neutral interactions.
The consistency of EMAP data with the interactions measured by
growth rate was defined as the percent of pairs with positive/neutral/
negative interactions identified by EMAP that were also classified as
the same type of interactions by the growth rate measurements using
flow cytometer. For some single gene deletions, the isogenic strains
were generated by both of the above crossing methods (Supplemen-
tary Table 3). The strains generated from different crossing methods
were treated separately when calculating genetic interactions.

Gene expression measurements and analysis

Strains

A list of all mutants strains used in gene expression measurements is
available in Supplementary Table 5. Diploid strains were made by
crossing one NAT® mutant strain with another Kan® single-mutant
strain. Single- and double-mutant haploid strains (MATa) were
selected with tetrad dissection from the diploid strains.

Microarray experiments

Expression profiling of mutant strains was performed using long
oligomer arrays as described previously in detail (Margaritis et al,
2009). In brief, each strain was cultured twice and labeled cDNA was
hybridized twice in dye-swap replicate against a single-common
reference wt cDNA, yielding a total of four estimates of changes in gene
expression for each strain versus wt. Normalization was performed
using print-tip Loess and statistical analysis was performed by LIMMA
(Smyth, 2004). A gene was regarded as significantly changed if the
P-value was <0.01 and the fold change >1.5. Some genes in the
pathways associated with the autotrophic markers in the wild-type
strain were found to change coordinately in multiple mutants bearing
different single/double deletions. These genes were removed from
the following analysis and the Supplementary Figure 2. The
gene expression data reported in this paper have been deposited in
the ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae/) with
accession no. E-TABM-1030.

Definition of potential target genes with transcription

factor occupancy data

Genome-wide occupancy data were downloaded from Yeast Transfac-
tomeDB (Foat et al, 2008). Position-specific affinity matrices (PSAMs)
was derived using MatrixReduce (Foat et al, 2006, 2008) from ChIP-
chip data (Harbison et al, 2004). The PSAM for a transcription factor
was then used to calculate the occupancy (or predicted-binding
affinity) of each promoter by the transcription factor (Foat et al, 2008).
We used the target genes defined by Maclsaac et al (2006) as a
reference set to define a occupancy cutoff that leads to the most
significant overlap between the predicted target set (based on
occupancy) and the reference set. This allowed us to include those
potential target genes that have relatively high ChIP-chip signal but fail
to pass the more stringent cutoff used by Maclssac et al. The predicted
target set and reference set were then merged as the potential
regulatory targets for the transcription factors. These potential targets
were used to analyze the enrichment of the common targets of a pair of
TFs in the genes changed only in the double mutants.
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Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com,/msb).
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