
Dynamics and Design Principles of a Basic
Regulatory Architecture Controlling
Metabolic Pathways
Chen-Shan Chin

1[
, Victor Chubukov

1,3[
, Emmitt R. Jolly

2
, Joe DeRisi

1
, Hao Li

1,3,4*

1 Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America, 2 Department of Pathology,

University of California, San Francisco, San Francisco, California, United States of America, 3 Joint Graduate Group in Bioengineering, University of California, Berkeley, and

University of California, San Francisco, San Francisco, California, United States of America, 4 Center for Theoretical Biology, Peking University, Beijing, China

The dynamic features of a genetic network’s response to environmental fluctuations represent essential functional
specifications and thus may constrain the possible choices of network architecture and kinetic parameters. To explore
the connection between dynamics and network design, we have analyzed a general regulatory architecture that is
commonly found in many metabolic pathways. Such architecture is characterized by a dual control mechanism, with
end product feedback inhibition and transcriptional regulation mediated by an intermediate metabolite. As a case
study, we measured with high temporal resolution the induction profiles of the enzymes in the leucine biosynthetic
pathway in response to leucine depletion, using an automated system for monitoring protein expression levels in
single cells. All the genes in the pathway are known to be coregulated by the same transcription factors, but we
observed drastically different dynamic responses for enzymes upstream and immediately downstream of the key
control point—the intermediate metabolite a-isopropylmalate (aIPM), which couples metabolic activity to transcrip-
tional regulation. Analysis based on genetic perturbations suggests that the observed dynamics are due to differential
regulation by the leucine branch-specific transcription factor Leu3, and that the downstream enzymes are strictly
controlled and highly expressed only when aIPM is available. These observations allow us to build a simplified
mathematical model that accounts for the observed dynamics and can correctly predict the pathway’s response to new
perturbations. Our model also suggests that transient dynamics and steady state can be separately tuned and that the
high induction levels of the downstream enzymes are necessary for fast leucine recovery. It is likely that principles
emerging from this work can reveal how gene regulation has evolved to optimize performance in other metabolic
pathways with similar architecture.
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Introduction

In the past several years, genomic approaches have
dramatically accelerated the discovery of biological regula-
tory networks. Combined with detailed biochemical and
genetic studies, these approaches have yielded the intricate
wiring diagrams for many biological systems. Although
revealing, such wiring diagrams are usually drawn as arrows
representing activation or repression that link regulators
with the genes they regulate, and typically, one can only make
qualitative statements (such as whether a gene is activated or
repressed) based on network architecture. Genetic and
biochemical studies traditionally focus on gene regulation
under steady growth conditions, and it is often difficult to
rationalize the complex design of a regulatory system based
only on these tasks.

To understand the functional significance and design
principles of complex regulatory networks, it is essential to
analyze the dynamical output quantitatively. In engineering
systems such as feedback control, specifications for dynam-
ics—such as speed of the response and settling time—strongly
constrain the possible choices of network architecture and
control parameters [1]. It is expected that the dynamic
properties of the cellular response are important determi-
nants for its fitness in an ever-changing environment.
Consequently, certain features of the network architecture

and parameters may be selected for their relevance to
dynamics, as opposed to the steady-state behavior [2]. A
number of recent studies have explored the connection
between architecture, dynamics, and fitness; examples in-
clude rationalizing simple network motifs by their dynamical
response properties [3,4], connecting just-in-time expression
with fitness advantage [5], and justifying seemingly redundant
regulatory mechanisms by their contributions to the different
aspects of the dynamical response [6].
We explored the significance of dynamics in the regulation

of metabolic pathways. Regulation of metabolic activity is of
central importance for single cell organisms such as
Escherichia coli and yeast, since they must respond to a

Academic Editor: Andre Levchenko, Johns Hopkins University, United States of
America

Received June 1, 2007; Accepted April 30, 2008; Published June 17, 2008

Copyright: � 2008 Chin et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Abbreviations: aIPM, a-isopropylmalate; GFP, green fluorescent protein; SCD,
synthetic complete media

* To whom correspondence should be addressed. E-mail: haoli@genome.ucsf.edu

[ These authors contributed equally to this work.

PLoS Biology | www.plosbiology.org June 2008 | Volume 6 | Issue 6 | e1460001

PLoS BIOLOGY



constantly changing nutritional environment. Previous ge-
netic and biochemical studies have elucidated the structure of
various metabolic pathways and the associated regulatory
circuits. Emerging from these studies is a basic architecture
that regulates a linear branch of a biosynthetic pathway [7,8].
This architecture is characterized by a dual-feedback mech-
anism to control the metabolic flux and the synthesis of the
enzymes in the pathway. The metabolic flux is generally
controlled by end product feedback inhibition of the first
enzyme unique to the pathway, and the expression of
enzymes is regulated by transcription factors that can sense
either the end product (e.g., tryptophan biosynthesis in E. coli
[9]), or an intermediate (e.g., leucine biosynthesis in yeast).
Transcriptional activation of a pathway by an intermediate is
particularly widespread (e.g., lysine and adenine biosynthesis
in yeast [10,11], lysine and methionine biosynthesis in E. coli
[12,13]), which influenced our choice of the leucine pathway
as a case study. Although all of these pathways have been
studied extensively, so far data for the quantitative dynamical
response have been scarce.

The leucine biosynthetic pathway in the yeast Saccharomyces
cerevisiae is summarized in Figure 1. This pathway converts
pyruvate to leucine by the sequential reactions catalyzed by
nine different enzymes. Part of the pathway is shared by
valine biosynthesis, and several enzymes are also shared by
the isoleucine biosynthetic pathway. There are three major
regulatory features. First, leucine can bind to Leu4, inhibiting
its catalytic activity [14]. Second, the branch-specific tran-
scription factor Leu3 is known to be able to regulate the
expression of all the genes in the pathway [15,16]. The
activation domain of Leu3 is shielded when the pathway is
inactive, and it is the binding of the metabolic intermediate
a-isopropylmalate (aIPM) to Leu3 that unmasks its activation
domain and allows it to activate the transcription of its
targets. Finally, the pathway is also regulated by the tran-
scription factor Gcn4, which is responsible for the general
amino acid starvation response. Gcn4 controls a few hundred
targets, including most of the genes in the leucine biosyn-

thesis pathway, under amino acid starvation conditions [8,17].
It is known that combinatorial regulation by Gcn4 and
branch-specific regulators such as Leu3 is a general scheme
for controlling the synthesis of different amino acids.
However, the effect of multiple regulators on the dynamics
of gene expression remains uncharacterized.

Figure 1. A Summary of the Leucine, Valine, and Isoleucine Biosynthesis

Pathway in S. cerevisiae

Enzymes are labeled next to their respective reactions, indicated by dark
green arrows for the leucine and valine biosynthesis pathways, and light
green for the isoleucine pathway. Metabolites are shown as blue circles,
with the final end products and the key intermediate aIPM labeled on
the figure. Allosteric regulation of enzymes by end products is shown by
the black lines. The transcription factors Gcn4 and Leu3 are shown as
boxes, with arrows to the genes displaying the fact that they are thought
to potentially regulate all the genes in the pathway. Leu3 activity is
dependent on aIPM level, as shown by the red arrow. For completeness,
we include the arrow showing that Leu3 expression is thought to be
Gcn4-dependent. See the text for further description on how the
pathway is thought to be activated under starvation conditions.
doi:10.1371/journal.pbio.0060146.g001
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Author Summary

Single-cell organisms must constantly adjust their gene expression
programs to survive in a changing environment. Interactions
between different molecules form a regulatory network to mediate
these changes. While the network connections are often known,
figuring out how the network responds dynamically by looking at a
static picture of its structure presents a significant challenge.
Measuring the response at a finer time scales could reveal the link
between the network’s function and its structure. The architecture of
the system we studied in this work—the leucine biosynthesis
pathway in yeast—is shared by other metabolic pathways: a
metabolic intermediate binds to a transcription factor to activate
the pathway genes, creating an intricate feedback structure that
links metabolism with gene expression. We measured protein
abundance at high temporal resolution for genes in this pathway
in response to leucine depletion and studied the effects of various
genetic perturbations on gene expression dynamics. Our measure-
ments and theoretical modeling show that only the genes
immediately downstream from the intermediate are highly regulated
by the metabolite, a feature that is essential to fast recovery from
leucine depletion. Since the architecture we studied is common, we
believe that our work may lead to general principles governing the
dynamics of gene expression in other metabolic pathways.



Results

Monitoring Protein Abundance as a Function of Time
Using an Automated System

To study gene induction with high accuracy and high
temporal resolution, we built an automated system to
monitor protein abundance in single cells. Although similar
systems have been built before to acquire time-dependent
population data [18–20], they have not been applied to
systematic analysis of the dynamics of a genetic network. Our
system consists of parallel batch cultures, in which yeast
strains with different genes tagged by green fluorescent
protein (GFP) are grown, connected to a flow cytometer by a
syringe pump. Both sample delivery and data collection are
controlled automatically by a computer with software written
by the authors (see Figure S3 for a schematic of the design).
The automated system we have built allows us to monitor up
to six different strains simultaneously for several hours. Since

a large number of cells (;105 to 106) are sampled in short
time intervals (1 to 7 min per sample), we obtain accurate and
highly reproducible induction profiles. Previously, it had
been shown in a genome-wide study that measuring protein
abundance by GFP tagging and flow cytometry yields highly
reproducible data and is less susceptible to experimental
variation compared with other techniques such as Western
blotting or mRNA microarray measurements [21].
A major advantage of single cell measurement by flow

cytometry is that it gives complete information on the
distribution of protein abundance in a large population,
instead of an average number obtained from a bulk measure-
ment. This is particularly important when the cell population
is inhomogeneous, where different cohorts might behave
differently. Shown in Figure 2A is the time course of LEU2-
GFP induction after switching from synthetic complete media
(SCD) to synthetic media without leucine (SCD-Leu). Follow-

Figure 2 . Decomposition of the Time Course by Separating Parent and Daughter Cells

(A) The time evolution of the histogram of protein abundance. Colors correspond to histogram height at each time point.
The bimodal distribution can be decomposed into two simpler time courses for (B) the mother population and (C) the daughter population by using
the cell wall dye.
(D) Comparisons between the time courses obtained by decomposition of populations and by the general gating procedure using the FSC and SSC
signals. The time course obtained by a gating procedure has an artificial drop due to the newborn cells.
(E) The evolution of the histograms of the cell wall dye signal through four time points. The peaks on the right correspond to the mother cells and the
peaks on the left correspond to the newborn cells.
(F) The scatter plot shows the distribution of the GFP signal and the cell wall dye signal at 120 min. The color indicates the local cell number density. The
mother and daughter cells show distinct distributions in both channels.
(G) The separation of the bimodal GFP signal distribution into two individual distributions from mother and daughter cells using the information from
the cell wall dye.
doi:10.1371/journal.pbio.0060146.g002
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ing media transfer, LEU2 is induced and the distribution of
LEU2-GFP levels in the population moves upward smoothly
and gradually evolves into a bimodal shape. We find that such
a bimodal distribution is due to continuous cell division. The
population with the lower GFP level consists of the newly
formed daughter cells, which receive less protein than the
mother cells due to asymmetric cell division [22].
Despite the fact that many previous studies have used the

population distribution of GFP level as a measure of gene
expression, no satisfactory solution has been found for
separating the effects due to the inhomogeneous population
from those due to gene regulation at the single-cell level. The
conventional approach is to sample cells with more uniform
size, selected from within a narrow range close to the median
of the forward-scattering channel (FSC) and the side-
scattering channel (SSC). Nevertheless, this method would
still show an artificial decrease in gene expression due to cell
division (Figure 2D). To help resolve this problem, we use a
dye to distinguish the newly formed daughter cells from the
mother cells, in a procedure similar to that used by Porro and
coworkers [23–26]. The cells are stained with Cy5 before
inoculation. Since the cell wall of the newly formed cells is
synthesized after inoculation, it carries few Cy5 dye mole-
cules. By monitoring the GFP channel and the Cy5 channel
simultaneously, we were able to decompose the overall
distribution into the distributions of the mother and
daughter subpopulations. Such decomposition allows us to
accurately reconstruct the gene induction profile for the
original mother subpopulation, which is more homogeneous
and less sensitive to the effects of cell division (Figure 2) (see
Materials and Methods for more details). As seen in Figure
2D, this approach eliminates the artifact of falling GFP levels,
found either by looking at the whole population or by using
conventional gating methods.

Differential Response for Genes Upstream and
Downstream of the Key Control Point aIPM
Using the system described above, we first measured the

induction profiles of all the genes in the leucine biosynthesis
pathway after transfer from SCD to SCD-Leu media. The high
accuracy and high temporal resolution allow us to follow the
change of the distribution and to calculate the rate of change
of the GFP levels in the population (see Materials and
Methods), which closely reflects the rate of protein produc-
tion because the lifetimes of the GFP tagged proteins are
much longer than the typical response time [27], whereas the
maturation time is shorter [28].
A striking feature we observed from these induction

profiles is that the genes upstream of the intermediate aIPM
(which serves as a key control point) and those that are
immediately downstream display drastically different re-
sponses. The upstream genes (ILV2, ILV6, ILV3, ILV5, LEU4,
and LEU9) were quickly induced but displayed a small-fold
change ranging from 2- to 4-fold. The specific rates of change
(defined as 1

GFP
dðGFPÞ

dt ) for these genes was at the maximum
(about 1% per min) immediately following the transfer of
media and then dropped to nearly zero in less than 50 min
(Figure 3A and 3B, i–vi). In contrast, the two downstream
genes (LEU1 and LEU2) showed a relatively slower induction
profile but much higher-fold changes. The rate of change for
LEU1 and LEU2 both started low and reached their maximum
(2% per min for LEU1 and 5% per min for LEU2) in

Figure 3. Measured Dynamic Profiles of all Pathway Genes

(A) The measured time course of gene induction of all nine genes in the
pathway ordered according to their positions in the pathway shown on
the right. For each time point, we obtain a histogram of protein
abundance using the observed normalized (background subtracted) GFP
signal from the mother population. The color corresponds to histogram
height at each time point.
(B) The specific induction rate of each gene in the pathway during
leucine starvation. The dots in the plot are the rates calculated using
nearby time points. The solid curves are spline fits to guide eyes. The
weakly induced enzymes (Ilv6, Ilv2, Ilv3, Ilv5, Leu4, Leu9, and Bat2) have
high specific induction rate at the beginning and drop quickly. The two
enzymes immediately downstream of aIPM, Leu1 and Leu2, have very
distinct induction profiles from the other enzymes. They are also the
most strongly induced genes in the pathway. The significant lag in the
Leu1 curve compared to the Leu2 curve is likely due to a growth defect
in the Leu1-tagged strain.
doi:10.1371/journal.pbio.0060146.g003
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approximately 50 min. The overall fold changes for both
genes after 400 min exceed 20-fold (Figure 3A and 3B, vii–
viii). Interestingly, the third downstream gene, BAT2, whose
product catalyzes the last step of leucine biosynthesis,
displayed an induction profile similar to upstream enzymes,
with a quick induction and an overall 2-fold change (Figure
3A and 3B, ix). Bat2 is a multi-functional enzyme shared by
the valine and isoleucine biosynthetic pathways (see Figure 1).

Distinct Dynamic Profiles Caused by Differential
Regulation

To investigate the mechanism underlying the different
responses for genes in the pathway, we measured their
expression time courses under different genetic perturba-
tions. Previous studies demonstrated that several genes in the
leucine pathway are coregulated by the general regulator
Gcn4 and the branch-specific transcription factor Leu3 [7].
Gcn4 is activated by general amino acid starvation and is
controlled by translational regulation [29]. Under general
amino acid starvation, uncharged tRNA activates the kinase
Gcn2, which phosphorylates the translation initiation factor
eIF2-a, leading to the translation of Gcn4. To analyze the
relative role of the general signal (uncharged tRNA) through
Gcn2/Gcn4 and the pathway specific signal (aIPM) through
Leu3 in determining the dynamical response, we measured
gene induction profiles in LEU3 and GCN2 knockout strains.

Figure 4 compares the detailed induction profiles of all the
genes in the leucine pathway in wild-type background to the
profiles of the same genes in leu3D and gcn2D background. We
again observed qualitatively different behaviors for Leu1 and
Leu2 in comparison with the rest of the pathway. The
deletion of LEU3 almost completely abolished the induction
of these two downstream enzymes, making it clear that Leu3
is the major inducer of Leu1 and Leu2. The effect of LEU3
deletion on the upstream enzymes and Bat2 is less
pronounced. Leu4 and Ilv3 show a slight increase in gene
expression level in the leu3D background. The other upstream
enzymes, as well as Bat2, have dynamic profiles almost
indistinguishable from wild type, except that the basal level
of Ilv5 in leu3D background is much higher than that in the
wild-type background. There are several possible explana-
tions for the slight increase in expression of some of the
upstream genes. As reported previously [30], Leu3 without
aIPM can act as a repressor. It is therefore possible that in the
wild type, Leu3 acts to repress upstream genes and these
genes are derepressed in the leu3D strains. Another possibility
is that in the leu3 deletion strains, Leu1 and Leu2 are not
expressed, which leads to a severe leucine deficit in SCD-Leu
media, activating a general starvation response.

In contrast to the LEU3 knockout, the GCN2 deletion has a
much less pronounced effect on either the upstream or
downstream genes. The basic dynamic profiles of all genes are
comparable to the wild-type strains. Since many studies have
suggested that the upstream genes are inducible by Gcn4
under general amino acid starvation [8,29], this result
suggests that Gcn2-dependent activation is weak under our
experimental conditions, where only leucine is scarce in the
medium. Most likely, the leucine-specific induction is
efficient enough that the intracellular leucine concentration
never drops to a sufficiently low level to activate the general
amino acid starvation responses.

To further analyze the initial fast induction dynamics of

the upstream genes, we also used a different approach to
quickly induce the pathway genes under a strictly controlled
environment. Instead of subjecting the cells to spinning,
washing, and staining, we simply diluted the SCD medium
with SCD-Leu, lowering the concentration of leucine by
about 10-fold in a few seconds. We continuously monitored
the protein abundance before and after the dilution and
observed that genes in the pathway are visibly induced within
minutes. This approach eliminates the dead time (;15 min)
due to media transfer/staining. It also eliminates potential
artifacts in gene induction due to possible stress caused by
the media transfer/staining protocol. The dilution method
allowed us to consistently detect small inductions (less than
20% change) within minutes after the change of environ-
ment. While it is no longer possible to separate mother and
daughter populations with this method, that separation is
most useful for the analysis of the later part of the time
course when cell division effect becomes significant. Using
the dilution method, we have analyzed the fast induction
profiles of one of the upstream genes under different genetic
and media perturbations. The resulting induction profiles for
LEU4 are shown in Figure 5. It is clear that the fast induction
of LEU4 is due to the depletion of leucine, since there are no
observable changes in expression under the controls in which
we add the same media or a media lacking lysine and
methionine. Deletion of the branch-specific factor LEU3 does
not seem to affect the initial fast induction, since the
induction curves for the wild-type and mutant strain are
nearly identical for the first 70 min or so. The mutant strain
eventually has higher induction, possibly due to a severe
leucine deficit that triggers a stronger general starvation
response. Deletion of GCN2 leads to a minor but observable
effect, resulting in a slightly slower induction profile. In
contrast, deletion of GCN4 has a much stronger effect, with
the initial fast induction almost completely abolished. Taken
together, these data suggests that the fast response of the
upstream genes is specifically induced by leucine depletion, is
independent of the branch-specific regulator Leu3, and that
the general regulator Gcn4 is involved, possibly via a Gcn2-
independent pathway. Our experimental observations lead to
the following model for the dynamics of the pathway when
the leucine level in the growth media is reduced. The
response of the upstream genes consists of transient and
minor inductions. This induction, combined with the release
of Leu4 from leucine inhibition leads to a quick increase in
aIPM synthesis. The accumulation of aIPM and its binding to
the transcription factor Leu3 activates the sustainable and
large amplitude expression of Leu1 and Leu2 to reinforce the
branch specific response. The induction of the downstream
genes leads to more effective conversion of aIPM to the end
product and the rebalance of the intracellular leucine
concentration.

Modeling the Dynamics of Gene Induction and
Intracellular Leucine Recovery
To test whether the above intuitive picture captures the

essential features of the response, we built a simplified
mathematical model to quantitatively describe the observed
dynamics and make new predictions. To minimize the
number of parameters and simplify the model, we make the
assumption that the enzymes not specific to the leucine
pathway (Ilv2,�3,�5,�6, and Bat2) are not rate limiting, i.e.,
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they are operating far below Vmax. There are several
justifications for this—first, none of these genes are induced
in media lacking isoleucine and valine even though they
comprise part of the corresponding biosynthetic pathway
(Figure 6). Furthermore, their induction is transient and an
order of magnitude lower than that of Leu1 and Leu2 in
media lacking leucine. These observations suggest that the
change of the flux through these enzymes is mainly due to the
change of the metabolite concentration. A simple calculation

indicates that the flux through each of these enzymes can
quickly balance the flux upstream of the enzyme in a time
much shorter than the typical pathway response time (see
Text S2). As such, we will ignore these enzymes in our kinetic
model. In our model, the pathway response is dominated by
the release of inhibition on the upstream enzyme Leu4 and
the transcriptional up-regulation of the downstream enzymes
Leu1 and Leu2. Assuming that the metabolite upstream of
Leu4 is always abundant, the equations describing the

Figure 4. Comparisons of the Gene Induction Profiles in Wild-Type, leu3D, and gcn2D Backgrounds

Shown are mean GFP levels following leucine depletion measured in three different backgrounds: wild type for blue circles, leu3D for red crosses, and
gcn2D for green asterisks. While the deletion of LEU3 completely abolishes the induction of Leu1 and Leu2, the effect on the upstream genes and on
Bat2 is insignificant. Deleting GCN2 also has relatively little effect compared to the LEU3 deletion.
doi:10.1371/journal.pbio.0060146.g004
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essential dynamics of the pathway can be written as:

dE1

dt
¼ b1 þ c1

I21
I21 þ K2

1
� d1E1 ð1Þ

dE2

dt
¼ b2 þ c2

I21
I21 þ K2

2
� d2E2 ð2Þ

dI1
dt
¼ c3EuK2

5

P2 þ K2
5

� c4E1I1
I1 þ K3

� d3I1 ð3Þ

dI2
dt
¼ c4E1I1

I1 þ K3
� c5E2I2
I2 þ K4

� d4I2 ð4Þ

dP
dt
¼ c5E2I2

I2 þ K4
þ Fext � d5P ð5Þ

A schematic of the model is shown in Figure 7. The model
consists of a set of differential equations describing the
dynamics of the two intermediates I1 (aIPM) and I2 (product
of Leu1, b-isopropylmalate, abbreviated as bIPM); the down-
stream enzymes E1 and E2, representing Leu1 and Leu2
respectively; the upstream enzyme Eu, representing Leu4
(treated as constant); and the end product P (leucine). The
rates of protein production (the first two terms in Equations 1
and 2) are assumed to be proportional to the mRNA level.
Since the half-lives of the mRNAs of the downstream genes
are short (;10 to 20 min [31]), we simply assume that the
mRNA level is proportional to the rate of transcription,
which has a low basal level (b1 and b2 terms) in the absence of
aIPM and a much higher level when aIPM is present (c1 and c2
terms). It is known that Leu3 is constitutively bound to its
DNA binding sites [32]. We thus assume that the transcrip-
tional induction by aIPM is proportional to the probability
that aIPM is bound to the preformed Leu3–DNA complex,
modeled by a sigmoid function of the aIPM concentration.
The dynamics for the intermediates (Equations 3 and 4) are
governed by the standard Michaelis-Menten kinetics. The
activity of the upstream gene is controlled by the feedback
inhibition by the end product (first term in Equation 3). The
dynamics of the end product are determined by the rate of
synthesis and the rate of usage (d5P), which is assumed to be
proportional to the leucine concentration. The Fext term
reflects the external leucine flux. It is presumed to be positive
in the rich media condition, and set to zero when leucine is
missing in the environment. The remaining terms (d1–4) are
used to model dilution effects due to cell growth (see
Materials and Methods for details).

Modeling the Downstream Gene Induction
We first tested whether the model can reproduce the

quantitative dynamics we observed for the downstream
enzymes. By adjusting the free parameters in Equations 1–5
within specified bounds (based on previous knowledge and
physical estimates, see Materials and Methods for details), the
model is capable of producing downstream enzyme induction
profiles (E1 and E2 in our model) that fit the observed Leu1
and Leu2 induction profiles (Figure 8A and 8B). The Leu1
profile is produced by taking into account the slower growth
of the Leu1-GFP strain, which is done by scaling the dilution
and usage terms by the relative growth rate. Given the fitting

of the downstream enzyme levels, the model also predicts the
dynamics of the intermediate aIPM and the intracellular
leucine level (Figure 8C and 8D), which are difficult to
measure with high temporal resolution. In particular, the
model predicts that the aIPM concentration starts at a low
level, reaches its maximum around 50 min, and then
decreases to the new steady-state level. The intracellular
leucine level gets depleted with a characteristic time of ;15
min, reaches minimum around 50 min, and then recovers to
steady state after a period of overshooting (Figure 8D).
The fitting of the gene expression profiles puts constraints

on the choice of the parameters but does not yield a unique
solution. Similar quality fitting can be achieved by different
sets of parameters. Part of this parameter degeneracy is
intrinsic to the nonlinear model, which exhibits ‘‘soft modes’’
in the parameter space, where the output depends only on
certain combinations of the parameters [33]. While the exact
parameter values cannot be uniquely inferred from our
model and experimental data, there are robust features of the
dynamics that are independent of the choice of the
parameters, which gives our model predictive power.

Predicting the Dynamic Responses to New Perturbations
To test the predictive power of the model, we considered

several environmental and genetic perturbations and used
the model to predict how these perturbations would alter the
pathway response. We then compared the predicted induc-
tion profiles to those measured by experiment. Because aIPM
is the key control point of the pathway, we considered two
different perturbations that would affect the dynamics of
aIPM concentration. For the first perturbation, we increased

Figure 5. Comparisons of Induction Profiles of Leu4-GFP in Different

Media and Genetic Backgrounds by Dilution and Continuous Sampling

Cell cultures are grown in bioreactors containing SCD media, and
monitored using the automated sampling system. At time t¼ 0, growing
cell cultures with GFP-tagged Leu4 are diluted into fresh media. For the
curves labeled ‘‘Wild Type,’’ ‘‘gcn2D,’’ ‘‘leu3D,’’and ‘‘gcn4D,’’ the
corresponding strains are diluted from SCD to SCD-Leu medium,
decreasing by 12-fold the concentration of leucine in the environment.
The curve labeled ‘‘SCD control’’ is a control in which wild-type cells are
diluted into the same SCD medium, and the curve ‘‘SCD-Lys-Met’’
corresponds to dilution of wild type into SCD-Lys-Met medium, decreasing
the concentrations of lysine and methionine by 12-fold, but keeping
constant the concentration of leucine. The log10 GFP levels are normalized
by subtracting the log10 basal level (defined by the level at t¼ 0).
doi:10.1371/journal.pbio.0060146.g005
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the external flux of aIPM by adding exogenous aIPM to the
media at a specific time after the transfer from SCD to SCD-
Leu media. This is modeled by the addition of a constant
external flux term /ext in Equation 3. The second is a genetic
perturbation in which we constitutively overexpress the
enzyme Leu1. This is modeled by the addition of a constant
term bext in Equation 1, where bext represents the constant
production of additional Leu1 due to overexpression. As one
would expect, the model predicts that increasing the aIPM
flux leads to increased induction of Leu2. In contrast,
overexpressing Leu1 leads to more efficient depletion of
aIPM, leading to decreased Leu2 induction. The predicted
induction profiles for several different values of /ext and bext
are plotted in Figure S1.

We performed both perturbations experimentally. In the

aIPM addition experiment, we started with two identically
prepared cell cultures in two different reactors, added 7.5
mM aIPM into one of the reactors 110 min after inoculation,
and monitored the induction profiles of the two cultures
simultaneously. The two induction profiles were nearly
identical before the addition of aIPM, and started to deviate
from each other in less than 10 min after the addition of
aIPM. As expected, the addition of aIPM leads to higher
induction of Leu2. By allowing the parameter /ext to vary
(representing the fact that we do not know exactly how much
aIPM from the medium is absorbed by the cell) we can fit the
induction profile accurately (Figure 8A, green lines). The
remaining parameters are fixed from fitting the wild-type
data. Notice that while we have to fit one additional
parameter, the parameter is sufficient to fit the timing,
amplitude, and shape of the extra induction due to the
addition of aIPM.
The Leu1 overexpression experiment was performed by

transfecting the wild-type cell with a plasmid containing a
galactose-inducible GAL1/GAL10 promoter driving Leu1
expression. When galactose is used as the carbon source, this
strain expresses Leu1 at a high level constitutively. As
predicted by our model, Leu2 expression was not as high as
in wild type, and again, by fitting only bext (the extra Leu1
produced by the GAL1/GAL10 promoter), we can reproduce
the temporal profile (Figure 8A, red lines). Again, the model
correctly predicts the effect of the perturbation.

Dynamics of the Intracellular Leucine Recovery and the
Features of the Pathway Design
We have observed contrasting dynamical responses for

enzymes upstream and downstream of the control point
aIPM and showed that the differential dynamics are caused by
differential regulation by Leu3. In addition, we have observed
that the enzymes immediately downstream of the intermedi-
ate have high-fold induction. Some of these features are also
present in other metabolic pathways controlled by a similar
regulatory architecture (e.g., Lys9 in lysine biosynthesis and
Ade17 in adenine biosynthesis (VC, CC, and HL, unpublished
data)). Are these features of gene expression linked to the
dynamics of the system’s recovery?
To address this question, we explored the connection

between gene expression and the intracellular leucine level,
which we assume to be a limiting factor for the recovery of
cell growth. Using the mathematical model, we analyzed how

Figure 6. Gene Expression in Media Lacking Various Branched Chain Amino Acids

Cells were grown in SCD medium, spun down, and switched to either one of seven test media, or SCD. Values are fold difference between mean GFP
levels in specified medium and mean GFP levels in SCD after 320 min. Cells are color-coded by this value (r): green for r , 1.1, yellow for 1.1 , r , 5, and
red for r . 5. Numbers in parentheses are –log10(p), with p-values calculated by a T-test between the SCD population and the test medium population.
doi:10.1371/journal.pbio.0060146.g006

Figure 7. A Schematic Diagram of the Mathematical Model

The correspondence to biological entities is as follows: Eu represents
Leu4 and Leu9, E1 represents Leu1, E2 represents Leu2, I1 represents
aIPM, I2 represents bIPM, and P represents leucine. The regulatory
relationships included in the model are the feedback inhibition of Leu4
and Leu9 by leucine, and the transcriptional up-regulation of Leu1 and
Leu2 by aIPM (through Leu3).
doi:10.1371/journal.pbio.0060146.g007
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changing properties of the network may affect the dynamics
of gene expression and intracellular leucine recovery.

We first explored the connection between basal expression
of the downstream enzymes and leucine dynamics. Our model
predicts that elevating the basal expression level of Leu1 (by
overexpression) reduces aIPM levels and consequently Leu2
expression, as confirmed by the experiments. The model also
predicts that constitutively overexpressing Leu1 leads to a
significant delay in the intracellular leucine recovery (Figure
8D, red line), since Leu2 becomes rate limiting. A possible
solution is to express both downstream enzymes at high levels
constitutively. However, this strategy is not optimal when
leucine is abundant in the environment, and the enzymes are
not needed.

A better strategy for improving the dynamics of the
response is to tune the strength of the induction (fold
change) for the downstream enzymes, instead of increasing
the basal expression level. This may speed up the recovery of
intracellular leucine during the transition to leucine-poor
media while minimizing the cost in leucine-rich media. We

implemented this perturbation to the system by changing the
parameters c1 and c2 in our model, which correspond to the
rates of transcription from the LEU1 and LEU2 promoters
when bound by the Leu3-aIPM complex. Figure 9 shows that
when the induction rates of the downstream enzymes are
increased, the model predicts that the speed of leucine
recovery is improved.
Interestingly, although changing the kinetic parameters

modifies the dynamic response, the leucine concentration in
the steady state remains the same. This turns out to be a
general property of the model as a consequence of flux
conservation, as long as the effective upstream enzyme level
only depends on the end product and the dilution due to cell
growth can be neglected (which is generally true based on the
model parameters we inferred, see Text S1). These observa-
tions lead us to speculate that the regulatory architecture of
the system makes it possible to separately tune steady state
and dynamics, and that certain features are chosen for their
influence on efficient dynamics, even though they do not
contribute to the maintenance of steady-state nutrient level.

Figure 8. Overview of Time Course Data and Model Predictions

(A) Comparison of Leu2 induction under different perturbations. The induction curves are almost identical when the cells grow in different media,
glucose (blue circles) and galactose (cyan crosses). The green squares show the measured time course when external aIPM was added at 110 min. The
red diamonds indicate the time course of the Leu1 over-expressed strain. The data shown are concentrations, calculated by estimating cell volume from
scattering data (see Materials and Methods for details). The solid lines with corresponding colors show the fitting results using our model.
(B) Comparison of Leu1 time course data to the model. Symbols indicate experimental measurement results while the solid line shows the fitting results
using our model. Incorporating only the slow growth rate into the model is sufficient to produce the slower induction observed for Leu1-GFP (see
Materials and Methods for details).
(C) The time courses of the concentration of the metabolic intermediate aIPM inferred by our model.
(D) The time courses of the concentration of intracellular leucine inferred by our model.
doi:10.1371/journal.pbio.0060146.g008
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Discussion

We have analyzed the dynamics of a regulatory module that
controls the leucine biosynthetic pathway in yeast, and
explored the connection between dynamics and network
architecture. Using an automated system for monitoring
protein expression level in single cells, we have systematically
measured the changes in expression level for the genes in the
pathway quantitatively, with high temporal resolution.
Compared to past studies—e.g., RNA expression based on
microarray experiments [34]—we can distinguish the tempo-
ral expression profiles of enzymes on the same pathway with
much higher accuracy. Our approach observes features that
are not seen when the network is at steady state and can
provide a key to rationalizing aspects of the regulation that
may not be necessary for maintaining growth in a constant
environment.

One remarkable feature we observed is the differential
response (both in terms of amplitude and timing) of the
enzymes in the pathway. For enzymes shared by the isoleucine
and valine pathways (Ilv2,�6,�5,�3, and Bat2), the induction
is fast and transient with a small amplitude. For the four
enzymes specific to the leucine branch (Leu4,�9,�1, and�2),
we observed two different responses separated by the key
control point: the intermediate aIPM, which couples meta-
bolic feedback to transcriptional regulation. While the two
enzymes upstream of the control point (Leu4 and Leu9)
displayed a fast transient induction with small amplitude, the
two enzymes downstream of the control point (Leu1 and
Leu2) showed a slow but sustained induction with large
amplitudes. These differential responses are caused by
differential regulation by the branch-specific regulator Leu3
and the general regulator Gcn4: Leu1 and Leu2 are strictly
controlled by Leu3, thus their activation requires the
accumulation of aIPM, which is the slow step; the fast
transient induction of other enzymes seems to be dependent
on Gcn4 but not Leu3. These observations are in accord with
the previous genetic analysis that showed that all the enzymes
in the pathway, except Leu1 and Leu2, can be induced by the
general amino acid starvation response [8], and that basal
expression of Leu2 is suppressed by a DNA-bound but
inactive Leu3 [35]. However, the vastly different effect of
Leu3 on upstream and downstream genes and its conse-
quence on the kinetics of gene induction had not been
explored before.

Mechanistically, it is unclear how Leu3 acts differently at
the promoters of the upstream and downstream genes. We
speculate that the different regulation might be achieved by
the positioning of the Leu3 binding site in the promoter, and
in particular its positioning relative to the Gcn4 binding site.
We have observed a correlation between the response profiles
and the binding site arrangement. At the LEU1 and LEU2
promoters, the Leu3 binding sites are close to the tran-
scription start site, whereas the Gcn4 binding sites are further
upstream. At most of the other promoters, the Gcn4 sites are
closer to the transcription start site.

Why are there two types of qualitatively different regu-
lation and consequently different dynamical responses? For
the enzymes shared by valine and isoleucine pathways, it can
be rationalized that they should not be strictly controlled by
the branch-specific regulator Leu3, since the cell needs to
turn on valine and isoleucine synthesis in environments

lacking valine and isoleucine but with leucine abundant
(which keeps Leu3 inactive). From this perspective, the
leucine biosynthetic pathway provides an interesting model
system to investigate cross regulation of pathways that share a
subset of enzymes. Our preliminary study with media lacking
all possible combinations of the three amino acids indicates
that all the enzymes of the pathway adjust their expression
level only in response to leucine depletion (Figure 6). Thus
with the depletion of valine and/or isoleucine but not leucine,
the metabolic flux is turned on by the release of end product
inhibition without changing the enzyme levels. This suggests
that these shared enzymes are operating far below saturation
in rich media and that their induction is not essential for
leucine production when leucine is depleted. The small
transient induction probably serves to fine-tune the speed
and the magnitude of the response.
The more intriguing observation is that even the four

enzymes specific to the leucine pathway (Leu4/Leu9, Leu1, and
Leu2) display different responses, depending on whether they
are upstream or downstream of the control intermediate
aIPM. Could the separation of two different responses by aIPM
be a coincidence? If aIPM acts as a positive regulator on the
pathway that regulates both production and consumption of
itself, the feedback effects are different between upstream
genes and downstream genes. For the downstream genes,
increased expression leads to more effective conversion of
aIPM to bIPM, thus the feedback is negative. In contrast, for
the upstream genes, increasing expression leads to more
synthesis of aIPM, thus the feedback is positive. The different
feedback effects suggest that the observed differential regu-
lation and differential dynamics for genes separated by aIPM
may not be a coincidence, but rather a consequence of natural
selection that optimizes the performance of the system.
Can Leu4/9 be strictly controlled by Leu3 (just like Leu1

and Leu2) and expressed only when the pathway needs to be
turned on? We argue that such a hypothetical design would
lead to negative consequences on the speed as well as the
stability of the system. In the real system where Leu4/9 are
constitutively expressed and their activities controlled by
leucine feedback inhibition, the depletion of leucine can
quickly lead to aIPM synthesis. In the hypothetical design, the
accumulation of aIPM needs activation of Leu4/9, and the
activation of Leu4/9 in turn needs accumulation of aIPM, thus
the kinetics of turning on can be slow. Moreover, a strong
induction of the upstream enzymes implies strong positive
feedback, and an overly strong positive feedback would lead
to unnecessary overproduction of both upstream enzymes
and the controlling metabolite aIPM itself, possibly leading to
uncontrolled activation of the pathway.
The regulation of the leucine biosynthetic pathway has the

extra complexity that the enzymes upstream and downstream
of aIPM are located in different cellular compartments: the
former in the mitochondria and the latter in the cytoplasm
[7]. However it is unlikely this feature is responsible for the
distinct dynamic profiles we have observed—for instance,
Bat2 is located in the cytoplasm along with Leu1 and Leu2
but has a dynamic profile more similar to the upstream
enzymes. Nevertheless, compartmentalization and intracellu-
lar transport can add an additional layer to the regulation,
which needs to be explored further.
As we have shown in our experimental observation and

theoretical modeling, the dramatic induction of the down-
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stream enzymes dominates the leucine synthesis dynamics
under our experimental conditions. Together with the end-
product inhibition of Leu4 by leucine, the high induction of
the downstream enzymes Leu1 and Leu2 by aIPM is arranged
so as to satisfy the following requirements: (1) reduce the
unnecessary enzyme production when cells are growing in
rich media and (2) boost Leu1 and Leu2 production in such a
way as to minimize the delay in growth due to lack of
intracellular leucine. The release from end-product inhib-
ition ensures a kick-start mechanism to provide the inter-
mediate metabolites. To complete the synthesis, the
downstream enzyme can either be expressed at a high level
constitutively or be produced only when the intermediate
metabolite is produced. The first choice is disadvantageous
because resources are wasted. The second mechanism would
need an extra regulation step, which must be efficient to
minimize the delay in growth. Previous studies show that
Leu3 is expressed and bound to the promoter regions of
LEU1 and LEU2 constitutively and activated by aIPM. The
fact that growth rate is unaffected under leucine depletion
(Figure S2) suggests that this system has evolved to optimize
its response, resulting in efficient production of leucine.

Transcriptional regulation by the uncharged tRNA/Gcn2/
Gcn4 pathway does not seem to be a major factor in our
experimental conditions, since none of the gcn2D strains show
expression profiles that are significantly different from wild
type under leucine depletion. One likely explanation for this
is that leucine synthesis is turned on so efficiently by the
branch-specific mechanism that the intracellular leucine level
is never sufficiently depleted to turn on the uncharged tRNA
pathway. Some evidence for this comes from the aforemen-
tioned fact that cell growth is not significantly affected by the
switch from SCD to SCD-Leu media (Figure S2), while cell
growth is typically stunted under more severe conditions that
are known to activate the pathway, for instance, starvation
conditions where synthesis of one or more amino acids is also
significantly impaired. We did observe leucine-specific
induction of upstream enzymes, which does not strongly
depend on either Leu3 or Gcn2, but depends on Gcn4,
pointing to the interesting possibility of a leucine-specific
induction of Gcn4 via a Gcn2- independent pathway.

The systematic and quantitative data we obtained has made
it possible to build and test a simplified mathematical model.
We show that the model captures the essential features of the
regulation, since it can quantitatively account for the
observed dynamics as well as predict the pathway’s response
to new perturbations. The model also makes a number of
interesting predictions that connect dynamics with network
design. One prediction of the model is that certain observed
features such as the high-fold induction of the enzymes
immediately downstream of the control point are required
for efficient dynamics but not for maintaining the steady-
state leucine level, thus the steady state level and the speed of
the response can be separately tuned. We have observed that
the enzyme immediately downstream of the regulatory
intermediate metabolite has the highest-fold induction across
several other pathways with similar architectures suggesting
that this may be a general design feature evolved to optimize
the dynamical response.

The basic dynamic features we observed in the leucine
biosynthetic pathway in yeast are different from the just-in-
time dynamics previously reported for amino acid biosyn-

thesis pathways in E. coli [5]. Zaslaver et al. reported just-in-
time dynamics characterized by the following features: the
closer the enzyme is to the beginning of the pathway, the
faster the response and the higher the fold induction. In our
experiments, although we observed differences between
upstream and downstream genes, we did not observe timing
differences among the upstream enzymes or among the
downstream enzymes. What seems to matter is whether the
enzyme is upstream or downstream of the control point, and
whether the enzyme is specific to the leucine pathway.
Furthermore, the downstream enzymes have higher-fold
induction, which seems to be opposite to the trend observed
in some of the pathways in E. coli. However, the pathways for
which strong just-in-time trends are observed are not
controlled by the same regulatory architecture. This certainly
suggests that network architecture can play a significant role
in the evolution of gene regulation, since different architec-
tures can impose different constraints and demands on the
dynamics of gene expression.
Understanding the structure-function relationship of bio-

logical regulatory networks is a big challenge. The dynamic
features of a network are important components of its
function and have been largely ignored in traditional genetic
and biochemical analysis. The network architecture we
studied in the leucine biosynthesis pathway is widely repeated
for regulating many other biosynthetic pathways. Our
experimental observation and theoretical modeling may lead
to new understanding of how these metabolic pathways are
regulated and the principles that have evolved to optimize
their performance. As the structures of more and more
regulatory systems are elucidated, it will be possible to
compare the architecture and quantitative dynamics across
different systems and in different species. Without question,
such studies will shed light on the functional constraints and
general design principles of biological regulatory systems.

Materials and Methods

Strains. All yeast strains used in this research are derived from
DBY7286 (MATa ura3–52). The C-terminal GFP-tagged strains were
constructed using the plasmid pFA6a-GFP(S65T)-KanMX6 as pre-
viously described [36] with modifications. For most enzymes in the
pathway, we found that the GFP-tagged enzyme strains have no
observable growth phenotype with the exception of GFP-tagged Ilv5
and Leu1 strains. In those two strains, we found that that the cell
cultures grow slower compared to other tagged and wild-type strains.
It is likely that the enzymatic function is affected by the GFP tagging.
Nevertheless, we found that the cells are still viable in SCD-Leu media.

The LEU3 knockout strains were constructed by replacing the
LEU3 locus with the URA3 gene from Kluyveromyces lactis by one-step
homologous recombination.

The strain over-expressing Leu1p was constructed in the following
manner: LEU1 was amplified by PCR from genomic DNA (yeast strain
SK1) with forward primer oEJ636, containing an Xho1 restriction
site, and reverse primer oEJ637 containing a SacII restriction site.
The PCR product containing LEU1 was subcloned into the pCR2.1
vector (Invitrogen) and sequenced to make plasmid pEJ663. The
XhoI/ SacII fragment of plasmid pEJ667, containing LEU1, was
further subcloned into pRS426 vector, containing promoter GAL1-
LacZ (pEHB22,073, graciously donated by the Blackburn lab), and
analyzed by sequence analysis to make pEJCS001, containing the
LEU1 gene driven by the GAL1 promoter. Plasmid pEJCS001 was
transformed into yeast cells. LEU1 expression was induced on YPG
media after overnight growth on raffinose media.

The strains used in this research are listed in Table S1.
Automated flow cytometry measurement system. We designed a

customized system for sampling cells. Cells growing in bioreactors
controlled by Sixfors laboratory fermenter (Appropriate Technical
Resources) are automatically delivered to a flow cytometer (LSR II,
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BD Biosciences) through a syringe pump system. The system was
constructed with an automatically controlled pump base (PSD/3,
Hamilton Company), an eight-port valve (HVCX 8–5, Hamilton
Company) and a 250-ll syringe. The schematic plot of the setup is
shown in Figure S3. The pump is controlled by software written by
the authors using Borland Cþþ 4.0. The software monitors and
decodes the raw data stream sent from the flow cytometer to
synchronize the sample delivery and the fluorescence readings. Extra
washing steps are programmed between samples to reduce sample
cross contamination below 1%. For each time point, 25 ll of sample
is injected into the flow cytometer at a flow rate of 25 ll per minute.

Growth conditions and measurements of gene induction. For the
time courses for which mother-daughter separation was done, the
following protocol was used: overnight cell cultures diluted to OD600
0.05–0.1 were grown to mid-log phase (OD600 0.3;0.5) in 100-ml
flasks. The cells were spun down and washed with phosphate buffered
saline (PBS) and stained with ¼ pack Cy5 dye (Cy5 Post-Labeling
Reactive Dye Pack, Amersham Biosciences) in 250 ll PBS for 10 min.
After staining, cells were washed again, and then inoculated into the
bioreactors. The typical starting cell density ranged from OD600 0.05–
0.1. We found that the variation of the initial cell density did not
affect the induction time courses for the first 6 h. The bioreactors
were preheated to 30 8C and stirred at 240 rpm. No clumping of cells
was observed from the flow cytometer readings.

For the dilution time courses, overnight cultures were diluted to
OD600¼ 0.01–0.03 and grown to mid-log phase (OD600 0.05–0.1) They
were then inoculated into bioreactors containing SCD media, and
further grown to about OD600 of about 0.4. Gene expression was
monitored using the automated system during this time. At t¼ 0, 30
ml of cell culture was diluted into 330 ml of SCD-Leu (or other, see
Figure 5) media, with negligible disruption in sampling.

For the measurements in media with different combinations of
branched chain amino acids (results shown in Figure 6), overnight
cultures were diluted to OD600 of approximately 0.05 into 96-well
plates containing SCD media. They were grown for 4 h, and spun
down. SCD medium was discarded, and cells were quickly reinocu-
lated into the test media.

The fluorescence reading is saved in the standard FCS 3.0 format.
The GFP fluorescence is measured using the area of the FITC channel
(510 nm) and the signal of cell staining is measured in APC (650 nm).
The measured GFP signal is calibrated for autofluorescence using the
average GFP signal from the measurement of a wild-type non-GFP–
tagged strain as a reference. Then the corrected GFP signals for each
cell are binned to get their distributions. Instead of using mean or
median values from gated populations, which are sensitive to the
shape of the distributions, we directly compared the distributions
from two consecutive measured samples. For two consecutively
measured samples, we calculate the amount shift of GFP signal from
the stained populations in log-scale to best overlap the distributions
(details in the Text S3). This shift gives the specific induction rate
1

GFP
dðGFPÞ

dt . We find this method is more robust against artifacts due to

the small changes in the shape of the distributions and does not
depend on arbitrary gating cutoffs.

Modeling the dynamics of the pathway. To compare our
experimental data, which is in units of GFP per cell, with the model,
which is formulated in units of concentration, we implemented a
procedure to estimate cell volume from our flow cytometry data. We
use FSCA (forward scattering area) to the 4/3 power as an
approximate measure of volume, as this method gives a good
correlation between volume and GFP level for individual timepoints.
This procedure determines the concentration up to a constant. The
constant is fixed by assuming an average cell volume of 50 lm3 and a
conversion of 10 protein molecules per GFP unit.

In an effort to constrain the parameters in the model as much as
possible, we performed a comprehensive literature search for
measurements of the chemical constants that correspond to
parameters in our model. We were able to find measurements,
mostly in vitro, of the constants corresponding to c3, c4, c5, k1, k2, k3, k4,
k5 and P(0) [37–42] (see Table S2 for values). Since these measure-
ments do not always correspond perfectly to in vivo values, we
allowed these parameters to change by 10-fold (1 order of magnitude)
up or down during the fitting. A similar procedure was followed for
the other free parameters. d5 was estimated by a rough calculation of
the amount of leucine that must be used during each cell cycle,
whereas c1 and c2 were estimated by finding the maximal values of the
Leu1and Leu2 specific induction rates, and assuming that each
promoter was approximately half-activated at this time. These
estimates were also allowed to vary within a factor of 10. The
dilution parameters d1, d2, d3, and d4 are estimated as ln(2)/T, where T
is the observed doubling time (approximately 120 min). Since these
parameters should correspond fairly accurately to our measured
data, we allow them to vary only 2-fold from the estimate. E1(0) and
E2(0) are taken from the basal level in our measurements and were
not allowed to vary. Finally b1, b2, I1(0), I2(0), and Fext are determined
by the other parameters by enforcing the condition that the system is
at steady state at t ¼ 0.

Since the Leu1-GFP strain grows significantly slower than the wild-
type or other tagged strains, we had to account for this effect in our
model. This was done by multiplying the dilution and usage terms by
a constant corresponding to the ratio of doubling times between the
Leu1-GFP and Leu2-GFP strains. This constant was not allowed to
vary in the fitting.

The set of ordinary differential equations was numerically
integrated, and the fit to the data computed by a simple least-square
method. The error was minimized by a simulated annealing
algorithm, using a Metropolis Markov Chain Monte Carlo method
[43,44]. The algorithm performed a thorough search of the parameter
space, and found several classes of solutions that are able to fit the
data almost equally well. At this point, several additional criteria
based on physical intuition were used to filter the solutions: we
required that the basal transcription terms (b1 and b2) be larger than
the aIPM-dependent transcription terms at t ¼ 0. We also required

Figure 9. The Leucine Concentration When the Promoter Strengths in the Model (c1 and c2 in Equation 1) are Changed From the Values Fitting the

Experimental Data (1x)

The insets show aIPM and bIPM concentrations. Increasing c1 and c2 (2x, red line) leads to a faster leucine recovery, whereas decreasing c1 and c2 (0.5x,
blue line) delays recovery. Neither change affects the steady state concentration.
doi:10.1371/journal.pbio.0060146.g009
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that the maximum aIPM value be of the same order of magnitude as
k1 and k2. This narrowed the solution space to only a few distinct
solutions, of which we chose the one that minimized the fitting error.
In general, the results presented in Figure 9, as well as the qualitative
profiles of the leucine and aIPM curves in Figure 8, are not
dependent on the particular choice of solution.

Supporting Information

Figure S1. Model Predictions of a Range of Experimental Perturba-
tions

(A) Predictions of the Leu2 time courses under the perturbations by
changing the exogenous aIPM flux (/ext) at 110 min.
(B) Prediction of the Leu2 time courses under the perturbations of
Leu1 overexpression (bext) at different level.

Found at doi:10.1371/journal.pbio.0060146.sg001 (214 KB EPS).

Figure S2. Comparison of the Growth Curve for Cells Growing in
Synthetic Complete Media without Leucine (SCD-Leu) and in
Synthetic Complete Media (SCD)

The numbers of cells are measured by counting the number of events
from flow cytometer measurements. The red line indicates the slope
for growth at a doubling time equal to 111 min.

Found at doi:10.1371/journal.pbio.0060146.sg002 (267 KB PNG).

Figure S3. The Schematic Plot for the Setup of the Automatic
Measurement System

Found at doi:10.1371/journal.pbio.0060146.sg003 (1.2 MB TIF).

Figure S4. A Graphical Display of the Calculation of the Specific
Induction Rate

Found at doi:10.1371/journal.pbio.0060146.sg004 (503 KB PNG).

Table S1. Strains Used in This Research

Found at doi:10.1371/journal.pbio.0060146.st001 (12 KB PDF).

Table S2. Estimates for the Parameters in the Model and the Final
Fitted Values

Found at doi:10.1371/journal.pbio.0060146.st002 (13 KB PDF).

Text S1. The Steady State Intracellular Leucine Level Is Independent
of Most Model Parameters

Found at doi:10.1371/journal.pbio.0060146.sd001 (29 KB PDF).

Text S2. The Upstream Fluxes Can Balance Much More Quickly Than
the Pathway Response Time

Found at doi:10.1371/journal.pbio.0060146.sd002 (36 KB PDF).

Text S3. Details on the Method Used to Align Consecutive Histo-
grams

Found at doi:10.1371/journal.pbio.0060146.sd003 (24 KB PDF).
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