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We present an algorithm that extracts the binding sites (repre-
sented by position-specific weight matrices) for many different
transcription factors from the regulatory regions of a genome,
without the need for delineating groups of coregulated genes. The
algorithm uses the fact that many DNA-binding proteins in bacteria
bind to a bipartite motif with two short segments more conserved
than the intervening region. It identifies all statistically significant
patterns of the form W1NxW2, where W1 and W2 are two short
oligonucleotides separated by x arbitrary bases, and groups them
into clusters of similar patterns. These clusters are then used to
derive quantitative recognition profiles of putative regulatory
proteins. For a given cluster, the algorithm finds the matching
sequences plus the flanking regions in the genome and performs
a multiple sequence alignment to derive position-specific weight
matrices. We have analyzed the Escherichia coli genome with this
algorithm and found '1,500 significant patterns, which give rise to
'160 distinct position-specific weight matrices. A fraction of these
matrices match the binding sites of one-third of the '60 charac-
terized transcription factors with high statistical significance. Many
of the remaining matrices are likely to describe binding sites and
regulons of uncharacterized transcription factors. The significance
of these matrices was evaluated by their specificity, the location of
the predicted sites, and the biological functions of the correspond-
ing regulons, allowing us to suggest putative regulatory functions.
The algorithm is efficient for analyzing newly sequenced bacterial
genomes for which little is known about transcriptional regulation.

algorithm u position weight matrix u DNA-binding site u
transcription factor u E. coli

As more and more genomes are sequenced, organisms are
increasingly represented by a list of genes; however, there is

little knowledge as to how these genes are regulated. Even for
Escherichia coli, the best understood bacteria, only about one-
fifth of the estimated 300–350 regulatory proteins (1) have
characterized binding sites. For newly sequenced bacteria, only
those transcription factor-binding sites that happen to match
those already identified in E. coli or Bacillus subtilis can be used
to infer regulatory properties of the organism. Consequently, it
is clearly important to develop genome-wide computational
tools to identify the binding sites of uncharacterized transcrip-
tion factors. That new bacteria are sequenced almost weekly
indicates that developing these computational tools is a high
priority.

One commonly used approach to identify transcription factor-
binding sites is to delineate a group of coregulated genes [e.g.,
by clustering genes on the basis of their expression profiles (2, 3),
or functional annotation] and search for common sequence
patterns in their upstream regulatory regions. An alternative
approach is to compare the regulatory regions of orthologous
genes in different species to identify functionally conserved
sequence motifs (4–6). These approaches have been successfully
used to analyze bacterial genomes, but they both have limita-
tions. For example, clustering genes on the basis of their
expression profiles is far from an exact and objective process;

each gene set defines a particular context, and searching for all
contingencies to which the cell can respond is daunting. Fur-
thermore, observed expression patterns can result from a reg-
ulatory cascade or from multiple factors acting simultaneously,
increasing the difficulty of identifying all of the relevant sites.
Interspecies comparison is limited by the availability of species
separated by proper evolutionary distances. In addition, multiple
alignment algorithms do not yet respect the phylogenetic rela-
tionships. Finally, when the conserved sequence elements are
identified, it is a challenging task to group the potential sites for
each gene into regulons (7).

The computational algorithms used to extract common sites
from a select group of genes can be categorized as either direct
search, i.e., count all sites in a certain class (8–10), or relax-
ational, i.e., guess a pattern and improve it iteratively (11–14).
The computational effort in the former approach grows expo-
nentially in the length of the site but nothing is missed, whereas
the latter can find longer and more diffuse patterns but may not
converge to the global optimal. Algorithms also differ in how
they assess the statistical significance of a motif: either extrin-
sically, by contrasting the frequency of the motif in the gene
cluster with that in the rest of the genome (8); or intrinsically, by
determining how much the number of occurrences of the motif
deviates from that expected by chance (e.g., given the single base
frequencies in the cluster). Applications to entire genomes are
difficult because of the quantity of data involved, the absence of
suitable comparisons for the extrinsic methods, the multiplicity
of patterns, and the limitations of simple background models for
the probabilities. Some of these limitations were overcome with
the Mobydick algorithm (15), which searches for multiple motifs
in parallel by sequence segmentation. It was run successfully on
the regulatory sequences upstream of all the genes in yeast.
However, it does not allow for the discovery of new position-
specific weight matrices (PSWM; related to a table of the number
of bases at each position for aligned sites), which is the most
fruitful way of describing bacterial regulatory sites.

Transcription factor-binding sites in bacterial genomes are
usually long, '30 bases, and variable. However, often most of
their sequence signal is carried in two conserved subregions,
each about 6 bases in length (16), which contain the predominant
contacts with the transcription factor. This bipartite character
results from the fact that most prokaryotic transcription factors
have two DNA-binding regions, because of either dimerization
of the transcription factor or the presence of two DNA-binding
domains in a single protein as in the case of s factors (17). A
number of researchers have exploited this fact to search for
patterns of the form W1NxW2 (henceforth termed dimers), where
W1,2 are short oligonucleotides (henceforth called words) sep-
arated by x arbitrary bases (9, 10, 15, 18, 19).

In this paper, we develop a new dimer-based algorithm that
generates PSWMs and puts an intrinsic probabilistic score on the
resulting motifs. When applied to E. coli, we identify the binding

Abbreviations: PSWM, position-specific weight matrices; TSP, transcription start point.
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sites of one-third of the characterized transcription factors with
high statistical significance. In addition, this algorithm predicts
binding sites for many uncharacterized transcription factors
that potentially define new regulons. We evaluate the signif-
icance of these predictions from their probability score, their
positional distribution, and the coherence of the biological
function of the putative group of coregulated genes. Our
success in applying this algorithm to E. coli suggests it will be
useful in identifying regulatory networks of newly sequenced
genomes.

Methods
Our algorithm consists of three steps. In the first step, it
tabulates the positions of all strings W up to some length
(typically 5 for '1 Mb of sequence) in the data. This table is
then searched to count the number of occurrences of the dimer
W1NxW2, where the spacing x varies typically from 0 to 30 bp.
This number is compared with that expected if W1,2 are
uncorrelated, and Poisson statistics is used to assign a prob-
ability to the observation. The second step takes all statistically
significant dimers and clusters them on the basis of sequence
similarity. The final step takes the actual genomic sequences
matched by any member of a cluster plus the f lanking regions
(with no double counting) and performs a multiple sequence
alignment to yield the PSWM. To search for putative sites,
standard information theory measures are used to score
sequences using PSWMs.

The computer time in step 1 scales as NW
2 1 L, where NW is

the number of words and L is the total length of data. For 103

words and a megabase of data, the calculation can be done in 30
min on a Silicon Graphics (Mountain View, CA) work station.
Typically L ; NW

2 , because going to longer words would reduce
the dimer counts to below the order of one. For step 2, we have
to compare all significant dimers with each other, which for
typical bacterial data can be done by the simplest pairwise
alignment algorithm in about as much time as step 1.

To calculate the probability of observing n(D) copies of a
dimer D by chance, we calculate its expected value from the
formula,

y~D! 5 Leff~D!
n~W1!

Leff~W1!

n~W2!

Leff~W2!
, [1]

where n(W1) and n(W2) are the total number of occurrences of
W1 and W2 in the data set and Leff(M) 5 (r(L(r) 2 L(M) 1 1)
is the number of independent positions in the data where a motif
M of length L(M) can be placed (M can be W1, W2, or D). The
summation is over the regulatory regions of all the genes (e.g.,
the upstream regions of all the operons in E. coli), each with a
length L(r).

A P value is assigned to a dimer assuming that the background
distribution is Poisson:

P 5 O
n $ n~D!

yn~D!

n!
e 2 y~D!. [2]

A dimer is considered significant if P , 1yNdimer, where Ndimer
is the total number of dimer patterns examined. When either
W1 equals W2 (direct repeat) or its reverse complement (palin-
dromic), the cutoff on P is set by the number of repeated or
palindromic dimers. These cutoffs ensure that the total number
of false positives is of order one if the data are described by the
background model.

Many patterns found in step 1 are similar and represent
different (typically overlapping) versions of the conserved core
of the binding sites of the same factor. For example, the following

two dimer patterns are related to the binding sites of LexA in
E. coli:

CTGTANNNNNNTACAG
CTGTNNNNNNNNNCAGT

To divide the significant dimer patterns we found in step 1 into
distinct groups, we first score the best alignment for each pair of
dimers as illustrated above. The score is the number of matches
minus the number of mismatches, and matches of N to any other
base or overhangs (e.g., the terminal T in the second sequence)
are ignored. We then create a similarity score between zero and
one by normalizing the pair scores by the maximum over all
possible pairs and then cluster the dimers by using the CAST
algorithm developed by Ben-Dor et al. (20). We experimented
with various thresholds for the cluster score (the average of all
the pair scores of its members) and found that a threshold of 0.6
gave good compact clusters.

A cluster obtained in step 2 will give us only the most
conserved part of the binding sites of a putative factor but
provides no information about the middle or the flanking
regions. However, this information still resides in the genomic
sequence. For a given cluster, we extract the actual sequences
that are matched by any member of the cluster plus about 10
flanking base pairs. We then perform a multiple sequence
alignment by using CONSENSUS (11), which easily finds the
correct alignment because the extracted sequences are short and
contain a strong pattern. Thus for each cluster, we derive an
alignment matrix, nia, which specifies the number of nucleotides
of base a at position i of the putative binding site. Such an
alignment matrix quantitates the preferences of the bases for the
putative DNA-binding factor.

Given an alignment matrix nia, we use it to derive the PSWM,
wi,a, and to score potential binding sites on the basis of a scheme
used by the CONSENSUS algorithm (11). The alignment matrix is
converted to a frequency matrix fi,a 5 (nia 1 1)y(a(ni,a 1 1),
with a pseudo count added because of the Baysian estimate. The
frequency matrix is then used to calculate a PSWM wi,a 5
log(fi,ayf a

0), where f a
0 is the background frequency of base a (for

E. coli upstream regions f A
0 ' f T

0 ' 0.3). The score of a sequence
s1s2 . . . sL of length L (equal to the width of the matrix) is given
by S 5 (i51

L wi,si
and correlates with the binding affinity of the

protein factor to the DNA sequence (21). When the PSWM is
used to score all the distinct length L pieces from a data set, the
histogram of the scores can usually be approximated by a
Gaussian. Hence, we can characterize a set of aligned sequences
and its associated PSWM by the mean ms and rms score ds of the
defining data and the corresponding scores against the back-
ground sequences, m and d. The more separated the two
distributions are, the better the PSWM can distinguish potential
sites from background sequences. A quantitative measure of
the specificity of the PSWM is the conventional z score, z 5
(ms 2 m)yd.

The sites predicted by a PSWM are those with a score larger
than a cutoff S0. The distance between the cutoff S0 and the
mean background score m measured in units of the background
rms score, (S0 2 m)yd, gives the false-positive rate. (The score
difference in units of d can be converted directly into a proba-
bility assuming a Gaussian distribution.) On the other hand,
(ms 2 S0)yds controls the false-negative rate; the smaller S0, the
less likely a true binding site will be missed. Thus the choice for
the cutoff depends on the tradeoff between false-positive and
false-negative rate. Setting S0 5 ms gives a 50% false-negative
rate if the distributions of the scores of the defining sequences
are symmetric around the mean, with a false-positive rate
determined by the z score.

The positional and functional analysis of matrix predictions
was performed by using flat files containing known and pre-
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dicted promoters from Regulon DB (22) (http:yykinich.cifn.
unam.mx:8850ydbyregulondb_intro.frameset), annotated E.
coli K-12 MG1655 genome sequence from the National Center
for Biotechnology Information, and gene multifunctional clas-
sification from GenProtEC (23) (http:yygenprotec.mbl.eduy).

Results
Deriving PSWMs from Overrepresented Dimer Patterns. We used our
algorithm to identify all statistically significant dimers in the
noncoding regions upstream of all '2,500 documented or pre-
dicted transcription units in E. coli (24) (http:yytula.cifn.
unam.mxy;madisonpyE.coli-predictions.html). Because al-
most all known transcription factor-binding sites occur within
300 nt upstream of the start point of translation (25), we limited
our search to this window. We identified 1,775 statistically
significant dimers, W1NxW2, where each word was 3–5 nt in
length. Among these dimers, 261 are direct repeats (W1 is the
same as W2), and 748 are palindromic (W1 is the reverse
complement of W2). After poly AyT patterns (which are abun-
dant and nonspecific) were filtered out, the remaining 1,554
dimers were grouped into 849 clusters, of which 233 clusters
contained 2 or more dimer patterns (the largest cluster having
61 dimers), and 616 clusters contained a single dimer pattern.

The dimer clusters were then used to obtain additional
sequence information for the putative binding sites in the
genome to derive PSWMs. To illustrate the process, we consider
a dimer cluster matching the binding sites of LexA. The dimers
in the cluster all share the palindromic CTGN10CAG motif
observed in almost all the experimentally determined binding
sites of LexA. Table 1 shows the alignment matrix derived from
the sequences taken from the 77 upstream positions that
matched the dimers in the cluster. The alignment of the extracted
sequences provides additional information not present in the
original dimer cluster. For example, the middle regions have
some AyT preference, with some positions exhibiting a strong
bias of A over T or vice versa (e.g., position 5 adjacent to the
conserved CTG core is predominantly T). Alignment matrices
derived from each cluster were numbered and converted to
PSWMs to score potential binding sites in the genome (see
Methods for a detailed description of this process). All of the
matrices and their associated statistics are given in the supple-
mentary materials.

PSWMs That Identify Known Transcription Factor-Binding Sites. To
determine whether our PSWMs match the recognition profile of
any known E. coli transcription factor, we tested their ability to
identify experimentally determined binding sites of 59 different
transcription factors in a database assembled by Robison et al.
(16) (http:yyarep.med.harvard.eduy). Each PSWM was used to
score all the subsequences of each site, and scores greater than
both thresholds ms 2 2ds, m 1 2.5d were considered to be
positive hits. The cutoff of ms 2 2ds enabled most of the defining
sites to be identified, whereas the cutoff of m 1 2.5d ensured a
low false-positive rate of less than 0.6%. To allow partial overlaps
between sites predicted by the matrix and the known sites, we
appended 5 bases (drawn at random by using the background
frequencies) to the two ends of the known sites and used the
matrix to score all the subsequences of the extended sites. The

significance of each matrix positively identifying sites for a
particular transcription factor was then calculated by using the
expected number of hits by chance and the observed number of
hits to derive a probability score (P), assuming a Poisson
distribution. We found that the binding sites of 37 transcription
factors match at least one of our matrices with high statistical
significance (i.e., a P value of less than 1yNfactorsNmatrices, or
2log10P . 4.76); the most significant top 20 matches are listed
in Table 2, together with the statistical significance of the match
and the specificity of the matrix as measured by its z score.

In a number of cases, several matrices matched the same factor
(e.g., CRP). Typically, the matrices describe slightly different but
overlapping sequences; however, the corresponding dimers did
not have enough sequence overlap to enable them to all be
clustered together. In such cases, only the matching matrix that
contains the most significantly overrepresented dimer is dis-
played in Table 2. For a few transcription factors, the number of
positive hits by a particular matrix exceeds the number of known
sites, because more than one subsequence in the binding site
scored above the cutoff threshold.

We compared the consensus sequences deduced from our
alignment matrices with those for the known transcription
factors (deduced from the experimentally determined binding
sites) in those cases where enough sites were known to give a
reasonable consensus [the consensus sequences were derived by
using the convention of Cavener (26)]. In many cases, our
consensus closely resembles that from the known binding sites
(e.g., CRP and LexA; see Table 2). However, in some cases, the
consensus sequences differ (e.g., SoxS and RpoD). In these
instances, the matrix is identifying a pattern shared only in a
subset of the known sites. For example, matrix 742 is clearly not
describing known RpoD promoter sequences, yet the matrix is
highly specific (see Table 2 for its z score). We surmise that
matrix 742 is identifying the binding sites of some other factor
that overlaps with some RpoD promoters.

PSWMs That Predict Regulons of Uncharacterized Transcription Fac-
tors. A significant number of the matrices that we derived did not
match the binding-site profiles of any known transcription
factors in the previous test; we termed these ‘‘new matrices.’’ To
eliminate redundancies among these matrices, we defined a
similarity score between pairs of matrices by using one matrix to
score the sequences defining the other. Matrices for which the
probability of the score was less than 1yNpair (where Npair is the
number of matrix pairs) were linked. We clustered the matrices
by single linkage and selected as a representative the one that
was derived from the largest dimer cluster (simply merging the
clusters together did not improve the quality of the profiles,
because some highly nonspecific dimers have a large number of
false-positive matches that would dominate each profile). By this
method, we obtained 122 distinct new matrices. Because the
binding sites of only a small fraction of the 300–350 transcription
factors in E. coli are known, it is likely that some of the new
matrices describe the binding sites of the uncharacterized factors.

It is expected that some of the new matrices will be more
successful than others in predicting binding sites; consequently,
it is important to identify properties of the matrices that corre-
late with biologically relevant predictions, which will enable

Table 1. The alignment matrix derived from the LexA cluster

A 37 0 0 0 7 34 15 36 21 29 20 33 25 39 0 76 1 10
C 10 76 0 1 4 11 12 11 17 16 14 15 12 12 77 1 0 11
G 13 0 0 76 9 9 12 15 8 10 9 10 12 10 0 0 76 19
T 17 1 77 0 57 23 38 15 31 22 34 19 28 16 0 0 0 37

Different columns give the number of counts for the four bases at different positions in the multiple sequence alignment. For the positions where a single
base represents the consensus (26), the corresponding counts for the dominant base are shown in bold face.
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further analysis to be prioritized by rank ordering the matrices
using these properties. We assessed the biological relevance of
the predictions of the new matrices by determining whether the
properties of each matrix are similar to the following diagnostic
features of known transcription factor binding sites: (i) that the
binding sites occur preferentially in the noncoding regions;
(ii) that the binding sites are localized at preferred positions with
respect to the transcription start point (TSP); (iii) that the
regulons are composed of genes with coherent biological func-
tions. In all of these tests, we examined the high scoring (score
higher than ms), thus more specific predictions by each matrix.

To quantitate the noncoding vs. coding bias of the predictions
made by a matrix, we counted the number of sites predicted in
all the noncoding vs. coding sequences in the genome. We then
calculated the ratio, Rbias, of the density of predicted sites
(number of sites per base) in the noncoding region to that in the
coding region. We also calculated a P value for the bias based on
Poisson distribution by using the density in the coding region to
define the expected number in the noncoding region. For the 37
matrices matching known sites, 22 of them were significantly
biased toward the noncoding region, with a P value of bias
smaller than 1025. Table 2 lists the Rbias values for the top 20
matrices matching known sites; in most cases, the predicted sites
are biased toward noncoding sequences. The same calculation
was also performed for all of the 122 representative new
matrices; some of the results are listed in Table 3.

The binding sites of characterized transcription factors often
have preferred positions with respect to the TSP. For example,
activators typically bind upstream of the core promoter element.
A well known case is the binding sites of the global activator,
CRP, which have strong preferences for positions centered
between 40 and 90 bases upstream of the TSP (Fig. 1 A). In
contrast, repressors such as LexA predominantly function by
binding to target sites overlapping the core promoter elements
to block the binding of RNA polymerase (Fig. 1C) or by binding
downstream of the TSP to disrupt efficient transcription elon-
gation. Thus sites predicted by a matrix that have a preferred
positional distribution with respect to the TSP supply additional
evidence that they may have a regulatory function.

We analyzed the positional distribution of sites predicted by
matrices in the 300-nt windows upstream of the '2,500 tran-
scription units relative to the TSP by using the known and
predicted promoter positions listed in the Regulon database
(22). It is clear that for the two matrices matching CRP and
LexA, the positional distribution of the predicted sites is very
similar to that of the known sites, with peaks at similar positions
(Fig. 1 B and D). Interestingly, the distributions of the predicted

Table 2. Transcription factors whose known binding sites were matched significantly by one of the matrices

Factor Sites Hits Expect Sig Rbias z score Consensus Consensus (known)

crp (001) 49 23 0.08 47.7 53.1 4.64 TGTGAN6TCACANWW WWNTGTGAN6TCACANWW
lexA (005) 19 19 0.09 37.2 3.81 4.42 CTGTN8ACAG TACTGTATATAHAWMCAGYA
tyrR (058) 17 15 0.42 17.8 9.80 4.25 TGTAAANWN4TWTACA RTGTAAWNWWATNTTTACANM
fnr (103) 14 11 0.13 17.4 4.72 4.20 TGAN6TCAAW AAWTTGATNWMNATCAAWWWW
argR (469) 17 19 1.27 15.6 2.57 3.62 TGATTAWNAATCAWNHTNA WNTGAATAAWWATNCANW
cpxR (774) 12 13 0.45 14.5 1.27 3.88 TNNCAAAAGNNGNVRAAAAGS GYAAAN5GTAAR
rpoN (061) 6 6 0.02 13.1 2.36 4.80 AANNCTGGCAN6TTGCW
narL (107) 11 10 0.34 11.3 0.89 3.84 CCCATMNNTN5TGGGN4AK TWMYYCNNWAKGGGTA
cysB (444) 3 6 0.05 10.7 1.90 4.48 GGGN10CCC
phoB (712) 15 7 0.13 9.92 6.49 3.99 TGTN8TGT CTGTCATAWAWCTGTMAYMWWH
fruR (404) 12 9 0.52 8.30 0.36 3.45 TSMVWHGCTGAMAGCTKTCAGC GCTGAAWCGNTTCANY
arcA (722) 14 5 0.08 7.68 3.63 3.91 TGTN9GTT GTTAAYTAWAWKTWA
metJ3 (028) 10 11 1.18 7.27 1.58 4.15 TNGCGTACWHNTGTACGC RKACRTCTRRACRTCTRRACGTMT
flhCD (057) 3 5 0.10 7.12 0.52 4.68 SCCGGN7CCGGC
purR (419) 22 10 1.07 6.70 0.26 4.36 DNGCAGRMAN4WNNTMWTNCTGGA ANGMAAACGTTTNCGTK
rpoD18 (742) 34 5 0.13 6.59 0.55 4.62 CGGN7CCG TTGAYAN18TANA
soxS (027) 14 7 0.43 6.44 0.56 4.69 WNNWGCCGGNKWN3CCGGC KNNANNGCAYNDWN5AWNYNMWN3M
argR2 (785) 7 5 0.15 6.24 12.2 3.96 ATAWN8AATA
rpoH2 (704) 7 4 0.07 6.15 2.52 4.59 CCCN9GGG
oxyR (454) 4 4 0.07 6.11 0.55 4.30 TCGN7CGA

Column 1: the name of the factor; the number in the bracket is the ID of the matrix. Column 2: number of experimentally determined binding sites for the
factor. Columns 3–5: number of positive hits by the matrix, expected number of hits based on background distribution, statistical significance of the match given
by 2log10P. Columns 6–9: noncoding bias ratio, z score, consensus of the matrix, consensus from known sites (only factors with more than 10 known sites are
shown).

Table 3. A list of new matrices and their properties

ID z score Rbias Pfunc Subcategory

223 3.76 4.59 0.0002 Primary active transporters
092 4.16 5.40 0.0004 Carbon utilization
015 4.15 11.76 0.0010 Membrane
072 4.49 1.84 0.0012 Transposon related
155 4.18 1.17 0.0015 Cell division
613 3.73 1.21 0.0016 Plasmid related
023 4.78 1.78 0.0017 DNA related
472 3.66 1.17 0.0018 Cell division
770 3.91 2.19 0.0021 Energy metabolism, carbon
011 7.01 84.48 0.0022 Capsule (M and K antigens)
393 3.73 1.10 0.0031 Pilus
013 4.58 3.22 0.0032 Transposon related
142 3.92 3.54 0.0034 Prophage genes
081 4.21 1.08 0.0037 Energy productionytransport
602 4.11 1.36 0.0048 Colicin related
349 3.49 1.14 0.0059 Central intermediary metabolism
362 3.48 1.15 0.0065 Metabolism of other compounds
499 3.81 1.10 0.0077 Type of regulation
048 4.51 4.16 0.0095 Genetic unit regulated
317 3.36 1.32 0.0097 Pilus
510 3.90 1.72 0.0100 Prophage genes
373 3.67 1.58 0.0147 Pilus
278 3.11 2.16 0.0168 Primary active transporters

Columns 1–5: the ID of the matrix, the z score, the noncoding bias ratio, the
smallest P value for the functional overrepresentation (by which the table is
ordered), and the corresponding functional subcategory.
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sites for both CRP and LexA also have a second peak further
upstream '200 nucleotides from the TSP. This is not due to the
sites regulating divergently transcribed genes, because in these
cases the predicted sites were assigned to the nearest promoter.
These sites may play a subtle modulatory role and therefore are
less likely to have been identified experimentally. Examples of
the positional distribution of predicted sites are shown for two
new matrices, matrices 223 and 92 (Fig. 1 E and F, respectively).
In each case, there is a large peak in the positional distribution
downstream of the core-binding site, suggesting that the factors
are likely to function as repressors. Many new matrices exhibit
highly clustered distributions of sites with respect to the TSP
(data not shown), suggesting that they are functional predictions.
However, other matrices exhibit little or no bias in the distribu-
tion of their predicted sites; in these instances, too little is known
about the properties of transcription factors at a global scale to
conclude whether these sites are functional.

To suggest possible regulatory functions associated with the
new matrices, we analyzed the biological functions of the tran-
scription units downstream of the predicted sites by using
information provided in GenProtEC database (23). This data-
base classifies E. coli genes into one or more functional catego-
ries on the basis of their cellular function; the categories are
hierarchically organized into 10 major functional categories at
the top level that expand in to 49 different subcategories. For a
given matrix, we tested whether the potentially regulated tran-

scription units were overrepresented in any subcategories, given
the known number of operons in that particular category for the
entire genome. We then calculated a P value for the degree of
overrepresentation in each subcategory. This approach was
validated by the results from analyzing known matrices; many of
them predicted regulated transcription units that were signifi-
cantly overrepresented in specific subcategories, with functions
consistent with the current knowledge about that factor. For
example, matrix 1, which matched CRP sites, predicts transcrip-
tion units most overrepresented in the subcategory ‘‘metabo-
lismycarbon utilization’’ with a P value 5 3 1027, and matrix 5
(matching LexA) was most overrepresented for the subcategory
‘‘information transferyDNA related’’ with a P value smaller than
10214. We performed the analysis for all 122 representative new
matrices, and each was assigned a subcategory corresponding to
the most overrepresented one (i.e., having the smallest P value,
denoted by Pfunc). Examples are listed in Table 3.

We found that there is a general correlation between the intrinsic
statistics of each matrix and its functional characterization. For
example, matrices with high specificity also tend to have high
maximum dimer significance, a large noncoding bias and small Pfunc
(i.e., matrices with high specificity tend to predict transcription units
with coherent functions; see http:yymobydick.ucsf.eduy;
haoliyecoli.html). Table 3 lists a subset of the new matrices that
have reasonable specificity (z score . 3.0), some bias toward
noncoding region (Rbias . 1.0), and are overrepresented in certain
subcategories (Pfunc , 0.02). These matrices are good candidates for
further experimental tests. A complete list of the parameters for all
122 new matrices, as well as their predicted transcription units, is
provided (see http:yymobydick.ucsf.eduy;haoliyecoli.html).

Discussion
We have developed an algorithm that is capable of identifying a
significant fraction of the regulatory sites in a bacterial genome
by using only sequence information and annotated open reading
frames. Built on the simple observation that many DNA-binding
proteins in bacteria bind to a bipartite motif with two short
segments that are more conserved than the region separating
them, the algorithm finds all statistically significant patterns of
that form. It then refines the description by clustering the
patterns, identifying the matching sequences in the genome, and
performing multiple sequence alignment to derive PSWMs. The
algorithm is simple and effective computationally and takes less
than 1⁄2 hour to exhaustively search all the dimer patterns in the
E. coli upstream regulatory regions on a SGI workstation.

Prior work that searches for gapped patterns has not used our
particular assignment of probabilities and clustering. Vanet et al.
(10) filtered dimer patterns on the basis of preassigned values for
their number of occurrences, and probabilities were assigned by
shuffling data. Their algorithm did not identify CRP sites or sites
for other prominent E. coli transcription factors. Sinha and
Tompa (9) computed probabilities by comparison to a third-
order Markov model and gave predictions for yeast gene clusters
(derived from known functional pathways and gene expression
data), most of them quite small. Many of their predictions were
found by searching the entire genome (15). van Helden et al. (18,
19) used an approach similar to ours to detect dimer patterns, but
they restricted the analysis to small clusters of coregulated genes,
thus typically only a few distinct patterns were found per gene
cluster. They did not attempt to cluster dimer patterns and derive
PSWMs. Our results might be contrasted with McGuire et al. (6),
where they used Gibbs sampling to search known regulons for
known sites (their control) and then used homologues of the E.
coli regulons in other organisms, either alone to find new sites or
grouped with the E. coli upstream regions to enhance the signal
for common sites. With their control set at a reasonable false-
positive rate (see their table 1), they get 15–20 of the strongest
factor sites, a result comparable to ours that we obtained without

Fig. 1. Distribution of the center positions of the predicted binding sites
(relative to the transcriptional start point) for four weight matrices. For the
two matrices matching CRP and LexA, positional distribution of the known
binding sites is also shown.
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using any prior knowledge of regulons (Table 2). van Nimwegen
et al. (7) clustered the interspecies data of McCue et al. and
Rajewsky et al. (4, 5) into regulons. By using only sites from E.
coli, their algorithm performed less well than our algorithm,
since less information about the structure of the binding site was
used. When all the species were retained, 50–100 new regulons
were predicted, typically smaller than those described here.

The binding sites of several well known transcription factors
were not identified by our algorithm. For example, no dimers
were identified that truly represented RpoD promoter sites. The
information content (thus the specificity) of the RpoD sites is
similar to that of the CRP sites (which were easily identified) but
distributed over a longer sequence, leading to fuzziness in the
two core sites. For example, the consensus for RpoD with an
18-bp spacer from the known sites is TTGAYAN18TANA, with
the second core TANA barely identifiable. Our algorithm also
missed the binding sites of the AraC family of transcription
factors. For example, the dimer pattern AGCAN8CATAA rep-
resenting AraC sites was overrepresented, with a significance of
2log10P 5 4.16 (if the occurrences of the asymmetric site in both
orientations were considered). However, this was still below the
cutoff threshold of 6 we set to control false positives.

As more and more DNA microarray data become available, it
is possible to combine the predicted motifs proposed here with
genome-wide mRNA expression data to identify conditions
under which the motifs may play a regulatory role. For example,
Courcelle et al. (27) identified 42 LexA-dependent transcrip-
tional units by comparing the response to UV irradiation of
wild-type cells with those containing a LexA mutant. Our matrix
5 predicted a total of 64 transcripts, of which 19 coincided with
those found by Courcelle et al. (only 1 was expected by chance).

In another example, from 16 NtrC-dependent transcriptional
units identified by Zimmer et al. (28), matrix 52 predicted 6 out
of 54 total predictions (expectation 0.3). Thus, we can confi-
dently assign functions to matrices 5 and 52. Once expression
data for cells under diverse conditions become available, it will
be informative to systematically match regulons predicted by the
matrices with those defined experimentally in various contexts to
gain insight into the global organization of the transcriptional
program in E. coli.

Our algorithm is straightforward to apply to other sequenced
bacterial genomes. A preliminary study of B. subtilis revealed
'1,700 dimers, a number comparable to that found in E. coli. In
contrast to E. coli, the primary s site in B. subtilis was easily
obtained, suggesting a greater degree of conservation of s sites
in B. subtilis compared to E. coli (M. Mwangi and E.D.S.,
unpublished work). Our approach should be particularly pow-
erful when applied to genomes of relatively unstudied bacteria.
Our studies in E. coli have demonstrated that PSWMs with
excellent intrinsic statistics predict transcription factor-binding
sites and their regulons with a high degree of confidence. Thus,
such an analysis can be applied to obtain a preliminary blueprint
of the transcriptional networks in these bacteria.

We have posed the full data set from analyzing E. coli genome
on our web site (http:yymobydick.ucsf.eduy;haoliyecoli.html)
and invite biologists to do further analysis and perform exper-
imental tests.
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