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Fast tree search for enumeration of a lattice model of protein folding
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Using a fast tree-searching algorithm and a Pentium cluster, we enumerated all the sequences and
compact conformationsgstructureg for a protein folding model on a cubic lattice of sizex3

X 3. We used two types of amino acids—hydrophdbi¢ and polarP)—to make up the sequences,

so there were ¥~6.87x 10'° different sequences. The total number of distinct structures was
84731 192. We made use of a simple solvation model in which the energy of a sequence folded into
a structure is minus the number of hydrophobic amino acids in the “core” of the structure. For every
sequence, we found its ground state or ground states, i.e., the structure or structures for which its
energy is lowest. About 0.3% of the sequences have a unique ground state. The number of structures
that are unique ground states of at least one sequence is 2 662 050, about 3% of the total number of
structures. However, these “designable” structures differ drastically in their designability, defined as
the number of sequences whose unique ground state is that structure. To understand this variation in
designability, we studied the distribution of structures in a high dimensional space in which each
structure is represented by a string of 1's and 0’s, denoting core and surface sites, respectively.
© 2002 American Institute of Physic§DOI: 10.1063/1.1423324

I. INTRODUCTION natural amino acids differ in size, hydrophobicity, and other

The protein folding problethas long attracted the at- physical e}nd chgml_cal_ properties. This hetgroge_neny 1S
coupled with two intrinsic features of polymers: chain con-

tention of scientists from various disciplines. The relation- L .
) . ) nectivity and the excluded volume effect. The free energy is
ship between the amino-acid sequence and the three- o . A
. . T a sensitive and complicated function in this huge conforma-
dimensional structure of a protein is not only an extremel

V.. - .
important and practical problem in biology, but also a funda—tlonal space with complex constraints. . Lo

. ) . In the last decade or so, there has been increasing inter-
mental problem in science. Despite a tremendous amount of

effort and progress over many decades, the problem remair?St in studying simple lattice models of protein folding. In

essentially unsolved. At least part of the difficulty arisestﬁese models, polypeptide chains are represented by self-

from the intrinsic complexity of the protein-folding problem. a;i/OIidr:ngtr\]NalkSn?nrr?] r?iglr?alr Iattlde.%/_, rFlg-fiL rg]thehatly S|m-n
Since the seminal work of Anfins@mbout 40 years ago, it plitying the conformational space. Very often the sequence

has been demonstrated that the native state of a small sing?gace and hence the heterogeneity is also simplified by using

domain protein is the global minimum of the free energy.Only two types of arznno ac!ds: hydrorﬂ@obﬁbl) and polar
However, the minimum-free-energy conformation of a(P)' These so-callt_ad HP lattice modefs npnethgless cap-
polypeptide chain is “hiding” in a large space ek confor- ture some _essentlal features of the protein foldmg problem.
mations, whereN is the length of the chain and is the Simple Iatpce m'odels have been app.l|ed o a'vy|d_e0range of
effective coordination number. Even if we count only the problems mcIudlpg collapse and folding transm(?n%, the
compact conformations for which=2 (see belowand take m_fluence of_packlng on sec_qndary-structure ;‘ormaﬁ’oand
N =100 for typical small proteins, the number of conforma- differences in .the deS|gna}b|I|ty of structurjéé The advan-
tions is hugezN~ 212~ 1%, On top of this huge conforma- tage of HP lattice models is tha’F they are simple enouglh to be
tional space lies the heterogeneity of amino acids. The 2 me_nable .to thorF’“gh theoretical study. These s?ud|es can
provide fruitful insights to feed back to or test against real-
istic models and experiments.

dpresent address: Sourcelight Technologies Inc., 906 University Place, Suite One approach for calculating thermodynamic and other
B-211, Evanston, lllinois 60201. . . . .
Ppresent address: Yianilos Lab, 707 State Road, Suite 212, Princeton, NeWOpertles of lattice models is to enumerate all possible se-

Jersey 08540. quences and conformatiofis!3~16 Since native globular
9Also at: Computer Science Department, New York University, New York, protein structures and presumably most of the low-energy
New York 10003. states are compact, enumeration studies are usually done on

9present address: InstitutrfRhysik, Humboldt-Universitaet zu Berlin, Ber- .
lin, Germany. compact conformations only. The number of compact con-

“Present address: Department of Biochemistry and Biophysics, Universitformations Cy, scales with the chain lengtN as Cy~2z",
of California at San Francisco, San Francisco, California 94143. wherez is an effective coordination number. Numerical esti-
f . i . . .
Z;eviei]rgrsagfBeBSSSAOStorageNetworks, Inc., 4 Independence Way, Pnnceth?Tatlon gives z~1.47 for 2D square latticé” and z
. . . 6 . .
9Author to whom correspondence should be addressed. Electronic maif” 1.86 for 3D_CUb|(is!att|Ce%a in good agreement with mean-
tang@research.nj.nec.com field calculation®® of Z/e and @Z—1)/e, respectively,

0021-9606/2002/116(1)/352/8/$19.00 352 © 2002 American Institute of Physics



J. Chem. Phys., Vol. 116, No. 1, 1 January 2002 Enumeration of a lattice model of protein folding 353

conformation. The energy of a sequence folded into a struc-
ture is taken to be the sum of the contributions from each

amino acid upon burial away from water,
N
) E=-2 ais, (1)
O
wheres; is a structure-dependent number characterizing the
degree of burial of théth amino acid in the chain. Largsy
:ﬁ f corresponds to a smaller surface area accessible to the sol-
vent. For a 4& 3X 3 structure on a cubic lattice there are four

$4=000000101000011000111100011000010001 different kinds of sites: center, face, edge, and colsee
Fig. 1). So, in principle, there could be four different values
of s;. To simplify the calculation, we take only two values
FIG. 1. A compact 43X 3 conformation on a cubic lattice. The sites are for s;: we define a strings;} for each structure witls; =1 if
classified into centersblack), faces(dark gray, edges(light gray, and  the ith site is a “core” (center or faceands;=0 if it is a

corners(white). This geometrical conformation corresponds to two struc- “surface” (edge or Comer Thus each compact structure of
tures, one starting with each end of the chain. Shown below the conforma.

tion are its corresponding two binary strings, in which 1's correspond to% X 3% 3 is mapped into a string of 1's and Ofsi}, with 12
“core” sites (centers and facéand 0's correspond to “surface” sitéedges  1's (“cores”) and 24 0's(“surfaces”). The surface-to-core
and corners ratio is 2, close to the values for small natural proteins. With
this simplification, the energy in Eq1) is just minus the dot
where Z is the coordination number of the lattice aed product of two binary sf[rlngs. For a given sequeriog}, a
ground-state structure is one that minimizes EQ. A se-

=2.718 - - is the base of the natural logarithrtFor real oo \na have more than one ground state structure, but
peptide chains the number of “distinct” states an amino acid? : y have mo €9 : !
we will be primarily interested in sequences with unique

can take,' as estimated very ro.ughlly from RamaChanqu:Sround states. Out of the 84 731192 compact structures, the
plots of dihedral-angle frequencies, is about 5 or 6, whic

gives z~2) For HP models in which there are only two number of distinct structure strings is 14 062 236, among
types of arﬁino acids, the number of sequencedligfan the which 2 662 050(corresponding to 1331 025 lattice confor-

. : . _mations each represent exactly one structure. Each of the
enumeration study the energies of every sequence folded intg ~ " ° . : .

) remaining 11400186 36-bit strings represents multiple

every compact conformation are evaluated, the total number

) . . Structures. We also analyzed ax3x3 model with 7
of energy calculations is"2x Cy,. The largest system previ- “cores” (1 center and 6 facesind 20 “surfaces’(12 edges
ously evaluated in this way is aN=27 (3X3X3) cubic 9

lattice modef:® where 2'x Cy,=227x 103 346102, Sev- and 8 corners In this case, there are 103 346 structures and

eral interesting results were found in the enumeration of thé3 291 distinct structure strings, among which only 120r-

27-mer, in particular the idea of designability and its relationreSpondmg t_o 60 lattice conformatiomepresent exactly one
to thermodynamic stabilit}? However,N= 27 is still small structure apiece.

compared with typical protein sizes. It would be very desir-

able to enumerate larger systems if at all possible. In thigll. TREE SEARCHING ALGORITHM

paper, we report results of a complete enumeration dilan
=36 (4%X 3% 3) cubic-lattice model. The number of compact

S»=100010000110001111000110000101000000

Because the protein chains in our model are considered

conformations i¥ 84 731192, so, naively, the total number to be dl_rected, there are generally two structures for _each
geometrical conformation, related by reversal of the direc-

. . 8
of energy calculapons 'SSEX.84 731 .19286X 10" The task tion of the chain(see Fig. 1 A small subset of structures are
was made possible by using a binary model, a fast tree; . ) .
search algorithm yielding a speed-up factor of 1600, and é[lhelr own reversgls. Astructure _strmg can be its own reversal
53-processor 200 MHz Pentium Pro cluster. even if its associated structurerist reversal symmetric. We
found that among the 14062236 structure strings in the
4x 3% 3 model, there are 2850 which are their own rever-
sals. The remaining 14 059 386 strings form 7 029 693 pairs,
The protein folding model we use in the enumerationwith the two members of each pair being the reversals of
study is the solvation model discussed indtial?® There is  each other. To reduce memory use, we keep only one mem-
considerable evidence that hydrophobic solvation forces arber of each such pair, with an extra bit tagged on the string to
primarily responsible for the folding of a protein into a par- indicate that it actually represents two strings: itself and its
ticular configuratiort>~2*The hydrophobicity of each amino reversal. There are thus 7029 693 850=7 032543 dis-
acid can be determined experiment&liy?® or by statistical tinct strings which we keep in the calculation.
analysis®>?’ It is energetically favorable for the more hydro- Each of the 7032543 distinct 36-bit structure strings
phobic amino acids to occupy core sitésyhere there is low {s;} has exactly 12 1's and 24 0's. Our goal is to find a way,
exposure to water. In the model, we denote a sequence given a 36-bit sequence stringr;}, to find if there is a
amino acids by o;}. We take only two types of amino acids: unique entry in the table which maximizes the dot product of
hydrophobic H ¢=1) and polar P §=0). A “structure”is  the structure string wit§a;}, or, equivalently, which mini-
the set of all reflections and rotations of a given compacimizes the energy of the sequereg} according to Eq(1).

Il. THE MODEL
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K=(00000) all strings in the node the total dot product is at least as big
U=(11111) as the dot product ofo;} with known-ones. On the other
Missing 1's=2 hand, the total dot product is at moétr;} dotted with
=2 known-ones plus the dot product ¢&;} with undecided.
1 0 Another upper bound for the total dot producfis} dotted
with known-ones plus the integer missing-ones.
K=(01000) (00011) Given such a tree, where the root corresponds to all of
U=(10111) (00101) the 7032 543 entries, and a 36-bit sequence sfrinp, here
Missing 1's=1 (10100) is how we search the table.
i=1 Compute an upper bound for the total dot product using
the smaller of the two upper bounds described above. Call
1 & this the “goal” G. If there are any entries which achieve this
goal, we are done. If not, repeat with the reversed version of
(11000) (01001) the sequencgThis is necessary because our table contains
Eg:%gg only one member of each reversed pairs of structure strings.

Whenever a ground state structure string is found for a se-
FIG. 2. Example of a binary tree of structure strings. The tree shown isJUENCE, the_ reversed sequence neC_eSSa”'y has_ the reversed
constructed for seven strings of five bits each with exactly two 1's per stringStructure string as a ground statAgain, if we achieve the

By fiat, splitting stops and a leaf node is defined whenever the number OgoaIG, we are done. If not, decrease the g@dby 1 and try
strings is three or fewer. At each nodégives the string “known-ones” and again Repeat until the goal is satisfied

U gives the string “undecided.” Also indicated are the number “missing : .
ones” and the positionon which the node branches. The tree used to search ~ Given a goalG, we search the tree as follows, starting at

structure strings in the 43 3 lattice HP model is simply a larger version the root node:
of the tree shown here. If the bound on the node indicates that g@lis un-
achievable, return failure.
If the node is a leaf node, check each entry. If one is

To do this rapidly, we organized the strings in the tablefound that satisfies the goal, return success. If not, then re-
into a binary treg(Fig. 2). First we describe how the tree is turn failure.
organized, and then later how the tree was actually con- If the node is not a leaf node, try each of the children.
structed. We first try the child that matchesr;}. That is, if the chil-

Each node in the tree represents a subset of the 7 milliodren split on the value at thjeh position, then we refer to bit
strings in the table. For each node, the following informationj of {o}. If it is a 1, then we first do the child having all 1's
is maintained: at positionj, and second do the child having all O’s at posi-
tion j. Similarly, if bit j of {o;} is a 0, then we first do the
child having all O’s at positior.

The essential advantage of the tree structure is that, typi-
cally, we do not have to check many structure strings for
each sequence because nodes high up in the tree get elimi-
nated by the upper bound. An additional advantage accrues
because we are only interested in sequences with unique
. . ground states. Therefore, as soon as two strings are found
'th position. ] L . ., that satisfy the goa5, the search can be stopped for that
(if) Mlssmg-ones_. Each s_t_rmg in a node W|II_have _1s_at sequence. Our protocol of following the branches that match

some_undeuded positions. For each strmg,_mssmgihe sequencd,} is intended to quickly identify strings
ones is the sum of these 1’s._ B)_/ constru_ctlon eacn/vhich satisfyG.
strlng_ has exactly 12 1's, so MISSING-ONES IS equgl " \We now discuss how the tree is actually built. In order to
12 minus the sum of known-ones. That is, MISSING“take advantage of the natural clustering of structure strings,
ones is a single integer no greater than 12 for eaCl\ﬁ/lve choose to split each node at the position that makes each
node. of the two child nodes as tightly clustered as possible. We
If the node is not a leaf, then it also contains a posi,[ionmeasure this clustering for each child as the sum of the “en-

numberi and two child nodes. These children partition thej[roples" for each bit, with the tightest clustering correspond-

entries in the parent according to the value of the indicated"¥ Ito tthetr:nlrnglfm ?ntrop);. ,tSpeC;f'Cf"%/' fotr eac?'chlld we
positioni: one child has all the parent entries wherel and ~ €Valuate the total entropfy of its set of structure strings as

the other child has all of the entries where 0. Each leaf
node at the end of the tree contains a small list of structure
strings—in practice we found 16 strings per leaf to work
best.

Given a 36-bit sequence striqgr;} and a node of the
tree, what bounds can we place on the dot produdtogf  wherep; is the probability of theth position being a 1, and
and all structure strings represented by the node? Clearly, fay, is the probability of theith position being 0, averaged

(i) Known-ones: A 36-bit string which Isaa 1 at thath
position if and only if all the table entries correspond-
ing to this node have 1's at tH¢h position.

(i)  Undecided: A 36-bit string which Isaa 1 at theith
position if and only if there is a table entry in this
node which ha a 1 at theith position and there is
another table entry in this node whichsha 0 at the

S:_Nchile (piInpi+q;lng;), (2
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over all Ngjq Structure strings in the child node. We choosein another bundle. We performed our computations with 14
to split each node at the position that minimizes the combits fixed and 22 bits varying, which produced a total of
bined entropy of the two children. (213 +(25)=8256 bundles.

The only remaining decision is when to stop spliting. ~ These 8256 bundles were executed on the NECI Large
When a node contains sufficiently few entries, it is fastest tdArray Multiple ProcessoréLAMP) system, which is a col-
just examine each entry in the node. Different stopping sizetection of 28 computers, all containing 200 MHz Intel Pen-
were tried, and 16 seemed to be optimal to minimize searchum Pro microprocessors. Three machines were uniproces-
time per sequence. Another consideration was memongors, the rest had two processors each. Every machine ran the
The memory used by the entries themselves id-inux operating system and had at least 128 MB of memory.
70325435=35162 715 bytes33.5 megabytes, but each Each computation typically required about 10 MB of
node takes additional space. With the given stopping critememory for itself, plus about 70 MB for thigead-only tree
rion, there were 1384679 nodes in the tree, and the totddf protein structure information, which was shared in
space required was 70.5 megabytes. memory on the multiprocessors. The dual processors handled

Constructing a tree in this manner took a few hours on gwo independent bundles concurrently, and sharing the tree
200 MHz Pentium Pro. Once the tree was constructed, catvas necessary to keep the total memory “footprint” of the
rying out each search took, on average, about g80per jobs small enough to fit together without conflict.
sequence, but this time varied widely from sequence to se- The distribution of bundles to “workers” was handled
guence. by a single “master” machine running shell and AWK scripts

For comparison, we also implemented a naive searckp poll the others, start new bundles, collect results, and de-
algorithm in which the energy of a sequence is computed fotect any crashes that might occur. The scripts were written to
each structure string. The tree-search algorithm ran approxpe restartable with minimal lost effort in the event of a fail-
mately 1600 times faster than our best variant of the naivéire affecting their own operation. As each bundle was com-
approach. pleted, a compactly coded binary output file was produced.

At the end, all 8 256 output files were merged into a single

450 MB result file. Auxiliary programs were written to ex-
IV. COMPUTING ALL THE GROUND STATES tract human-readable data from these binary files.

The tree-search algorithm allows us to quickly compute The complete computation ran for about 198 h, with an

ground states for each protein sequence in turn, and to recofy€rage of 39 processors running at any one time, giving a

those sequences with unique ground states, together with tl?%tal of 7805 CPU hours. Bundle execution times varied

corresponding structure string and energy value. When a fom 23 s to almost 19 h, with a mean of 56.7 min.
this is d_one, we would also like addlt_lonal statistics, such a§/. RESULTS
the designability of each structure, i.e., for how many se-
guences it is the unique ground state. This and other statistics Using the tree-searching algorithm and the LAMP sys-
can be computed, after the fact, if the unique ground-stateem, we were able to completely enumerate the34<3 HP
solutions are stored. lattice protein model. We found that 114 572 949 sequences
Because our protein chains are directed, i.e., the twdave unique ground states, which is about 0.3% of all se-
ends are not considered identical, both a structure and itguences. In comparison, 0.09% of the sequences in the
oppositely directed partner are allowe@ometimes these 3X3X3 model have unique ground states.
are the same structujeds a result, if a particular sequence We associate to each structure a quantity called
{0} has a particular structure as a unique ground state, thetesignability>?° The designability of a structure is the num-
the reversed sequence must have the reversed structure ashigs of sequences having that structure as the unique ground
unique ground state. For thex8x3 problem, there are state. By this definition, if two or more structures share the
therefore (3% -+ (21")=34359869440 possible sequencessame string representation then they have zero designability
that need to be considered, counting all 36-bit binary stringsince those structures can never be the unique ground state of
but rejecting reversed strings. There are 7032543 distincny sequence. Thus, only the 1331025 struct(aiad their
structure strings. Since we are interesteduimque ground  reverse pathseach of which has its own, unshared string
states, each structure string is tagged with an additional bit teepresentation can have nonzero designability. For these
indicate whether it represents exactly one, or more than onafructures, the average designability is 114572949/
geometrical structure. 1 331025-86. However, the designability of these struc-
The overall computation is trivially parallelizable be- tures has a very broad range: from 1 to 4 4@&e minimum
cause calculating the ground state for each sequence can designability is 1 because the sequence with the same bit-
done independently. In order to manage the calculation o$tring as the structure is guaranteed to have that structure as
ground states for all sequences in parallel, it proved useful ta unique ground staeln Fig. 3, we plot the number of
divide the space of sequences into “bundles,” and use thesstructures with a given designability versus the designability.
as the unit of parallelism. Instead of organizing these bundle®ne sees a long tail in the high designability region, consis-
by fixing some high-order bits of the 36-bit sequefee}  tent with previous results on thex33x3 modet® and on
and varying the rest, we fixed an equal number of low- andrarious two-dimensional modet&2°
high-order bits, varying the bits in the middle. This way en-  Also consistent with these previous works, there are no-
tire bundles could be eliminated as reversals of the sequencéseable geometrical differences between the highly design-
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FIG. 3. Histogram for the designability of structurids .
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able 4x3x 3 structures and the less designable ones. In Fig.
4, we have plotted the average structure stigy for highly
designable structures, and for all structures. Sgeel fora  FIG. 5. Two-point correlation function§(i,j) of s;, averaged ovefa) all
core site, and;=0 for a surface site, the ensemble averagestructure strings an¢b) over top 1000 most designable strings.

(si) gives the probability that theh monomer on the chain

occupies a core site. It is seen in Fig. 4 that for highly des-

. ) ; roperty of compact, self-avoiding structur@sThe correla-
ignable structures the first few monomers on the chain ten& o . .
ion length is slightly shorter for highly designable structures

FFig. 5b)], implying more frequent transitions between sur-

is exactly 1/3 because everyxBX 3 structure has exactly fgce and core sites. In Fig. 6, we plpt the number qf tran.s.l
. - . tions t between surface and core sites versus designability
12 core sites¢;=1) and 24 surface sites;(=0). Therefore . . : .
Ns. For clarity, only structures with selectdds's are in-

the tendency of the ends of highly designable structures tQ : o .
) Cluded in the plot. We see a weak positive correlation be-

occupy core sites must be balanced by a tendency for the rest : . .
. o fweent and Ng, with a large variance for a giveNg. A

of the structure to occupy surface sites. This is also seen in

Fig. 4—the central third of the chain for highly designablemUCh stronger positive correlation between surface-core

. - transitions and designability was found in a two-dimensional
structures has an increased probability to occupy surfac . 330 . .
. X6 lattice modeP3° possibly reflecting the larger more
sites, on average.

. . . compact core in the two-dimensional model.
In Fig. 5 we have plotted the two-point correlation func- .
. : Sy As an example, the topmost designabbe 3 3 struc-
tion of structure stringsC(i,j) =(s;sj) —(si)(s;), averaged

over highly designable structures and over all structuresture is plotted in Fig. 7. The geometry of this structure is

. . ; : onsistent with the results shown in Figs. 4 and 5. The 12
There is a clear correlation of site types, with a range o . o
S oo .—core sites are equally divided between the two ends of the
roughly one monomer in either direction along the chain.

L . . . ..__‘chain, with the center part of the chains 9—26, consisting
That is, if theith monomer of a chain occupies a core site, . : . .

. . ) entirely of surface sites. Moreover, while the core sites tend
there is an enhanced probability for monometsl to oc-

cupy core sites. This simply represents a general geometrical

average compact structure. The averags; dbor each chain

14— T e
13 | @D -
— All strings .:
—— Top 100 12 r 7
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A -~~~ Top 10000 : nr @7
¢
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FIG. 6. The number of transitiortsbetween surface and core sites vs des-

FIG. 4. The averagés;) vsi. s;=1 for a core site and;=0 for a surface  ignability. Structures with a set of selectdd’s are shown. Both the average
site. The average is taken over all, top 100, top 1000, and top 10 000 mogsquaresand the rms deviation@rror bars for givenNg's are plotted. Also
designable structure strings, respectivélior any single string, the average shown are the number of surface-core transitions for ten topmost designable
of s; over the string is 1/3. structureg(circles.
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with interaction energies that included both solvation and
segregation componentsA later study verified the exis-
tence of highly designable structures for HP lattice models in
two dimensions including only solvation energi@sViore-
_‘C) over, in two dimensions, there was little change in the quali-
tative behavior of designability with increasing structure

o—0 O size, suggesting that highly designable structures persist up
O O to realistic protein chain lengths. Within the<3xX 3 solva-
O tion model, however, only 120 (0.1%) out of the 103 346
(f. total structures have nonzero designabilfffhese 12060

lattice conformationsstand out as highly designable struc-
s=110110110000000000000000001101001110 tures with the largest average gaps in the solvation plus seg-
regation model of Lietall®] It has remained unclear
(There is another topmost structure of the same geometrical conformatiowh.eth_er the SO|VEl.t|0n quel In threp dimensions can produce
with the reversed chain direction. a significant fraction of highly designable structures at real-
istic protein chain lengths. The current study, extending the
solvation model up to 43X 3 structures, offers strong evi-

to cluster, the longest run of core sites is only three, dence that the existence of highly designable structures is a
=33-35, consistent with the average correlation lengthyeneral feature of solvation models in three dimensions.
shown in Fig. 5. To understand the ubiquitous appearance of highly des-

The complete enumeration of sequences and structurggnable structures, it is helpful to review the geometrical in-
allows us to identifyall sequences with a given structure asterpretation of designability for the solvation mod&To this
their unique ground state. We can therefore analyze the stend, the energy in Eq1) is rewritten as
tistical properties of sequences that design a particular struc-
ture. For example, in Fig. 8, we have plotted the probability
that a hydrophobic monomer occupies positipraveraged E=
over all 4466 sequences that design the structure in Fig. 7.
Figure 8 therefore represents the complete mutation patter he last term is constant for a given sequence. and the
of the topmost designable structure. The 12 core sites AlSecond-to-last term is constant fc?r all corg act s,tructures
easily identified since the probability of a hydrophobic heref th d state f . P is det )
monomer at these sites is nearly one. That is, nearly all of thg yerefore, the ground state for a given sequence 1S deter
4466 sequences that design this structure have 1's at thegneIned by the first term alone, which is one-half the Ham-

12 positions. Similarly, the first three surface sites at the "9 distance between the sequence string and the structure

beginning of the chain and the last four surface sites at tha"ng: Simply put, the structure nearest to a sequence is its

end of the chain are always occupied by polar monomersground state. The designability of a structure is thus equal to

Interestingly, the monomers in the central parts of the chainsg:fugttﬂreber of sequences that lie closer to it than to any other

| =10-26, have a roughly 1/3 chance of being hydrophobic This geometrical interpretation suggests that highly des-

even though all of these are surface sites. The mutation pat- . .
9 P |ﬁnable structures are those with few nearby competing

FIG. 7. The topmost designablex8x 3 structure and its structure string.

N
i241[|Ui_5i|_|0i|_|5i|]- (3

N| =

tern therefore has the nontrivial feature that the monomers aS ructures. To test this. we have plotted in Fid. 9 the number
some sites are critical for the stability of the ground state ' ' P 9.

while the monomers at other sites are freely mutable. of neighboring structu_res, as a function of Hamm'”g distance
between structure strings, for the topmost designable struc-

ture and for structures of intermediatBl{=100) and low
VI. DISCUSSION (Ns=1) designability. It is seen that high designability im-
The existence of highly designable structures emergeglies a reduced number of neighbors, and this correlation
from a study of 33X 3 and 6x 6 HP lattice protein models persists out to distance I6tructures whose strings differ by
interchange of five surface and core sitesor comparison,
we have also plotted in Fig. 9 the expecte(d) if the
14 062 236 structure strings were uniformly distributed on
the hyperplane given by the constraints;=12 and =
(—1)'xs;=0. The second constraint comes from the fact
that the 4< 3X 3 cubic lattice is a bipartite lattice, so that for
any structure there are six core sites wittven and six core
0.2 r sites withi odd3! The total number of points in the hyper-
00 * el plane is Cfg)z=344622096, whereC'=n!/m!(n—m)!.
0 5 10 15 20 25 30 35 The number of points in the plane at a Hamming distance
i d=2XI from a given point is simply: N(d)
FIG. 8. The mutation pattern for the topmost designable structure, shown in EL=OCI‘§CI£2C|6 kCllzk’ with C”m: 0 if m>n. The expected

Fig. 7. Thex's represent the structure string, with 1's for core sites and 0's"(d) is_ then pxXN(d), Whgre p=14062236/344 622 Q96
for surface sites. ~0.04 is the average density of real structure strings in the
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100 [ ' ' ] The existence of highly designable structures can there-
10° L ' ] fore be viewed as a geometrical property of the space of
100 | | structure strings. For the two-dimensional solvation model, it
T 10t has been stress€dhat the most highly designable structures
€ 66 fall in regions of low density in the space of structure strings.
102 I 0 82}‘;5:” fit 7 In this sense, highly designable structures have “atypical”
107 1 patterns of surface and core sites. The current work extends
10" 7 , ‘ , ‘ ] this conclusion to a three-dimensional solvation model with
10" ' | | . chain lengths Il=36) approaching those of real proteins.
10 - Many aspects of real proteins are not addressed by our
10° § simple lattice model. Interactions such as hydrogen bonds,
T 10t | ] salt bridges, disulfide bonds, and detailed sidechain packing
= 10° L R gﬁssian i A are beyond the model’s minimal representation of hydropho-
10 | — — — Uniform | bicity and excluded volume. Moreover, real proteins contain
1 secondary structuresy(helices and3 strand$, and come in
107 I | ; | ] a variety of sizes and shapes. What aspects of our model
105 I eoBOSeg i study pertain to the more complex world of real proteins?
1001 ) = 7 First, the overall notion of designability—that some struc-
. 10° | § tures have intrinsically better folding properties than
?‘E:, 10 | e 1 others—has potentially broad application. Studies of RNA
10° | o Gaussian fit - folding®? and off-lattice protein modetd®*both yield highly
102 | o - =~ Uniform ] designable structures. Second, insofar as hydrophobic pat-
10 - // | terning is a dominant factor in the folding of real proteins,

the model result that high designability correlates veitypi-
0 5 10 15 20 25 - L
cal hydrophobicity patterns may have real significance.
d In summary, we have employed a fast tree-search algo-
FIG. 9. Number of structure strings(d) at Hamming distancel from a  rithm to find the ground states of all sequences for>a34
given structure string(a) For the top structureb) for 6 structures with X 3 lattice HP model of proteins. The results confirm the
Ns=100; (c) for 6 structures withNs=1. In each case, the circles are a gyjstence of highly designable structures in a three-
Gaussian dlstrlbu_tlon W|th_ the same mean and_va_rlance. The dotted line '3imensional solvation model with a surface-to-core ratio of
the expecteai(d) if the strings were uniformly distributed. g ’
2-to-1, close to the values for small natural proteins. Highly
designable structures are found to differ geometrically from
hyperplane. We see that the structure strings are more clusther structures. Interestingly, structures are found to have
tered than the uniform distribution—the lower the design-nontrivial mutation patterns with some sites strictly con-
ability, the more clustered they are. served and others mutable. The fast tree-search algorithm is
A scarcity of near neighbors corresponds to a narrowparticularly well suited to lattice HP solvation models, and
width of the distribution of neighbor distances, since everywe hope our detailed description of the method will prove
structure has the same total number of neighbors. We haugseful.
therefore plotted in Fig. 10 the width of the distribution of
neighbor distances over the entire range of designability. The
width falls smoothly with increasing designability, indicating 1pyein Folding edited by T. E. CreightofFreeman, New York, 1992
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