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Fast tree search for enumeration of a lattice model of protein folding
Henry Cejtin,a) Jan Edler,b) Allan Gottlieb,c) Robert Helling,d) Hao Li,e) James Philbin,f)

Ned Wingreen, and Chao Tang,g)

NEC Research Institute, Princeton, New Jersey 08540

~Received 30 July 2001; accepted 8 October 2001!

Using a fast tree-searching algorithm and a Pentium cluster, we enumerated all the sequences and
compact conformations~structures! for a protein folding model on a cubic lattice of size 433
33. We used two types of amino acids—hydrophobic~H! and polar~P!—to make up the sequences,
so there were 236'6.8731010 different sequences. The total number of distinct structures was
84 731 192. We made use of a simple solvation model in which the energy of a sequence folded into
a structure is minus the number of hydrophobic amino acids in the ‘‘core’’ of the structure. For every
sequence, we found its ground state or ground states, i.e., the structure or structures for which its
energy is lowest. About 0.3% of the sequences have a unique ground state. The number of structures
that are unique ground states of at least one sequence is 2 662 050, about 3% of the total number of
structures. However, these ‘‘designable’’ structures differ drastically in their designability, defined as
the number of sequences whose unique ground state is that structure. To understand this variation in
designability, we studied the distribution of structures in a high dimensional space in which each
structure is represented by a string of 1’s and 0’s, denoting core and surface sites, respectively.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1423324#
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I. INTRODUCTION

The protein folding problem1 has long attracted the a
tention of scientists from various disciplines. The relatio
ship between the amino-acid sequence and the th
dimensional structure of a protein is not only an extrem
important and practical problem in biology, but also a fund
mental problem in science. Despite a tremendous amoun
effort and progress over many decades, the problem rem
essentially unsolved. At least part of the difficulty aris
from the intrinsic complexity of the protein-folding problem
Since the seminal work of Anfinsen2 about 40 years ago, i
has been demonstrated that the native state of a small, s
domain protein is the global minimum of the free energ
However, the minimum-free-energy conformation of
polypeptide chain is ‘‘hiding’’ in a large space ofzN confor-
mations, whereN is the length of the chain andz is the
effective coordination number. Even if we count only t
compact conformations for whichz'2 ~see below! and take
N5100 for typical small proteins, the number of conform
tions is huge,zN'2100;1030. On top of this huge conforma
tional space lies the heterogeneity of amino acids. The
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natural amino acids differ in size, hydrophobicity, and oth
physical and chemical properties. This heterogeneity
coupled with two intrinsic features of polymers: chain co
nectivity and the excluded volume effect. The free energy
a sensitive and complicated function in this huge conform
tional space with complex constraints.

In the last decade or so, there has been increasing in
est in studying simple lattice models of protein folding.
these models, polypeptide chains are represented by
avoiding walks on a regular lattice~e.g., Fig. 1!, greatly sim-
plifying the conformational space. Very often the sequen
space and hence the heterogeneity is also simplified by u
only two types of amino acids: hydrophobic~H! and polar
~P!. These so-called ‘‘HP lattice models’’3–5 nonetheless cap
ture some essential features of the protein folding proble
Simple lattice models have been applied to a wide range
problems including collapse and folding transitions,6–10 the
influence of packing on secondary-structure formation,11 and
differences in the designability of structures.12,13 The advan-
tage of HP lattice models is that they are simple enough to
amenable to thorough theoretical study. These studies
provide fruitful insights to feed back to or test against re
istic models and experiments.

One approach for calculating thermodynamic and ot
properties of lattice models is to enumerate all possible
quences and conformations.4,5,13–16 Since native globular
protein structures and presumably most of the low-ene
states are compact, enumeration studies are usually don
compact conformations only. The number of compact c
formationsCN scales with the chain lengthN as CN;zN,
wherez is an effective coordination number. Numerical es
mation gives z'1.47 for 2D square lattices15,17 and z
'1.86 for 3D cubic lattices,16 in good agreement with mean
field calculations18,19 of Z/e and (Z21)/e, respectively,

ite

ew

,

ity

ton,

il:
© 2002 American Institute of Physics



ci
ra
ic
o

in
b
-

th
on

ir
th
n
ct
er

e
d

on

a
r-

o

-

e
:

ac

uc-
ch

the

sol-
ur

s
s

f

ith

, but
ue
, the
ng
r-
the
ple

nd

red
ach
ec-
e
rsal

the
er-
irs,
of

em-
g to
its

gs
y,

of

re

c
rm

t

353J. Chem. Phys., Vol. 116, No. 1, 1 January 2002 Enumeration of a lattice model of protein folding
where Z is the coordination number of the lattice ande
52.718••• is the base of the natural logarithm.~For real
peptide chains the number of ‘‘distinct’’ states an amino a
can take, as estimated very roughly from Ramachand
plots of dihedral-angle frequencies, is about 5 or 6, wh
gives z'2.! For HP models in which there are only tw
types of amino acids, the number of sequences is 2N. If in the
enumeration study the energies of every sequence folded
every compact conformation are evaluated, the total num
of energy calculations is 2N3CN . The largest system previ
ously evaluated in this way is anN527 (33333) cubic
lattice model,13 where 2N3CN52273103 346'1013. Sev-
eral interesting results were found in the enumeration of
27-mer, in particular the idea of designability and its relati
to thermodynamic stability.13 However,N527 is still small
compared with typical protein sizes. It would be very des
able to enumerate larger systems if at all possible. In
paper, we report results of a complete enumeration of aN
536 (43333) cubic-lattice model. The number of compa
conformations is16 84 731 192, so, naively, the total numb
of energy calculations is 236384 731 192'631018. The task
was made possible by using a binary model, a fast tr
search algorithm yielding a speed-up factor of 1600, an
53-processor 200 MHz Pentium Pro cluster.

II. THE MODEL

The protein folding model we use in the enumerati
study is the solvation model discussed in Liet al.20 There is
considerable evidence that hydrophobic solvation forces
primarily responsible for the folding of a protein into a pa
ticular configuration.21–23The hydrophobicity of each amin
acid can be determined experimentally24–26 or by statistical
analysis.23,27 It is energetically favorable for the more hydro
phobic amino acids to occupy core sites,28 where there is low
exposure to water. In the model, we denote a sequenc
amino acids by$s i%. We take only two types of amino acids
hydrophobic H (s51) and polar P (s50). A ‘‘structure’’ is
the set of all reflections and rotations of a given comp

FIG. 1. A compact 43333 conformation on a cubic lattice. The sites a
classified into centers~black!, faces ~dark gray!, edges~light gray!, and
corners~white!. This geometrical conformation corresponds to two stru
tures, one starting with each end of the chain. Shown below the confo
tion are its corresponding two binary strings, in which 1’s correspond
‘‘core’’ sites ~centers and faces! and 0’s correspond to ‘‘surface’’ sites~edges
and corners!.
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conformation. The energy of a sequence folded into a str
ture is taken to be the sum of the contributions from ea
amino acid upon burial away from water,

E52(
i 51

N

s isi , ~1!

wheresi is a structure-dependent number characterizing
degree of burial of theith amino acid in the chain. Largersi

corresponds to a smaller surface area accessible to the
vent. For a 43333 structure on a cubic lattice there are fo
different kinds of sites: center, face, edge, and corner~see
Fig. 1!. So, in principle, there could be four different value
of si . To simplify the calculation, we take only two value
for si : we define a string$si% for each structure withsi51 if
the ith site is a ‘‘core’’ ~center or face! and si50 if it is a
‘‘surface’’ ~edge or corner!. Thus each compact structure o
43333 is mapped into a string of 1’s and 0’s,$si%, with 12
1’s ~‘‘cores’’ ! and 24 0’s~‘‘surfaces’’!. The surface-to-core
ratio is 2, close to the values for small natural proteins. W
this simplification, the energy in Eq.~1! is just minus the dot
product of two binary strings. For a given sequence$s i%, a
ground-state structure is one that minimizes Eq.~1!. A se-
quence may have more than one ground state structure
we will be primarily interested in sequences with uniq
ground states. Out of the 84 731 192 compact structures
number of distinct structure strings is 14 062 236, amo
which 2 662 050~corresponding to 1 331 025 lattice confo
mations! each represent exactly one structure. Each of
remaining 11 400 186 36-bit strings represents multi
structures. We also analyzed a 33333 model with 7
‘‘cores’’ ~1 center and 6 faces! and 20 ‘‘surfaces’’~12 edges
and 8 corners!. In this case, there are 103 346 structures a
6 291 distinct structure strings, among which only 120~cor-
responding to 60 lattice conformations! represent exactly one
structure apiece.

III. TREE SEARCHING ALGORITHM

Because the protein chains in our model are conside
to be directed, there are generally two structures for e
geometrical conformation, related by reversal of the dir
tion of the chain~see Fig. 1!. A small subset of structures ar
their own reversals. A structure string can be its own reve
even if its associated structure isnot reversal symmetric. We
found that among the 14 062 236 structure strings in
43333 model, there are 2 850 which are their own rev
sals. The remaining 14 059 386 strings form 7 029 693 pa
with the two members of each pair being the reversals
each other. To reduce memory use, we keep only one m
ber of each such pair, with an extra bit tagged on the strin
indicate that it actually represents two strings: itself and
reversal. There are thus 7 029 69312 85057 032 543 dis-
tinct strings which we keep in the calculation.

Each of the 7 032 543 distinct 36-bit structure strin
$si% has exactly 12 1’s and 24 0’s. Our goal is to find a wa
given a 36-bit sequence string$s i%, to find if there is a
unique entry in the table which maximizes the dot product
the structure string with$s i%, or, equivalently, which mini-
mizes the energy of the sequence$s i% according to Eq.~1!.
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To do this rapidly, we organized the strings in the tab
into a binary tree~Fig. 2!. First we describe how the tree
organized, and then later how the tree was actually c
structed.

Each node in the tree represents a subset of the 7 mi
strings in the table. For each node, the following informat
is maintained:

~i! Known-ones: A 36-bit string which has a 1 at thei th
position if and only if all the table entries correspon
ing to this node have 1’s at thei th position.

~ii ! Undecided: A 36-bit string which has a 1 at thei th
position if and only if there is a table entry in th
node which has a 1 at theith position and there is
another table entry in this node which has a 0 at the
i th position.

~iii ! Missing-ones: Each string in a node will have 1’s
some undecided positions. For each string, missi
ones is the sum of these 1’s. By construction ea
string has exactly 12 1’s, so missing-ones is equa
12 minus the sum of known-ones. That is, missin
ones is a single integer no greater than 12 for e
node.

If the node is not a leaf, then it also contains a posit
numberi and two child nodes. These children partition t
entries in the parent according to the value of the indica
positioni: one child has all the parent entries wherei 51 and
the other child has all of the entries wherei 50. Each leaf
node at the end of the tree contains a small list of struc
strings—in practice we found 16 strings per leaf to wo
best.

Given a 36-bit sequence string$s i% and a node of the
tree, what bounds can we place on the dot product of$s i%
and all structure strings represented by the node? Clearly

FIG. 2. Example of a binary tree of structure strings. The tree show
constructed for seven strings of five bits each with exactly two 1’s per str
By fiat, splitting stops and a leaf node is defined whenever the numbe
strings is three or fewer. At each node,K gives the string ‘‘known-ones’’ and
U gives the string ‘‘undecided.’’ Also indicated are the number ‘‘missi
ones’’ and the positioni on which the node branches. The tree used to sea
structure strings in the 43333 lattice HP model is simply a larger versio
of the tree shown here.
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all strings in the node the total dot product is at least as
as the dot product of$s i% with known-ones. On the othe
hand, the total dot product is at most$s i% dotted with
known-ones plus the dot product of$s i% with undecided.
Another upper bound for the total dot product is$s i% dotted
with known-ones plus the integer missing-ones.

Given such a tree, where the root corresponds to al
the 7 032 543 entries, and a 36-bit sequence string$s i%, here
is how we search the table.

Compute an upper bound for the total dot product us
the smaller of the two upper bounds described above. C
this the ‘‘goal’’ G. If there are any entries which achieve th
goal, we are done. If not, repeat with the reversed version
the sequence.~This is necessary because our table conta
only one member of each reversed pairs of structure strin
Whenever a ground state structure string is found for a
quence, the reversed sequence necessarily has the rev
structure string as a ground state.! Again, if we achieve the
goalG, we are done. If not, decrease the goalG by 1 and try
again. Repeat until the goal is satisfied.

Given a goalG, we search the tree as follows, starting
the root node:

If the bound on the node indicates that goalG is un-
achievable, return failure.

If the node is a leaf node, check each entry. If one
found that satisfies the goal, return success. If not, then
turn failure.

If the node is not a leaf node, try each of the childre
We first try the child that matches$s i%. That is, if the chil-
dren split on the value at thej th position, then we refer to bi
j of $s i%. If it is a 1, then we first do the child having all 1’
at positionj, and second do the child having all 0’s at pos
tion j. Similarly, if bit j of $s i% is a 0, then we first do the
child having all 0’s at positionj.

The essential advantage of the tree structure is that, t
cally, we do not have to check many structure strings
each sequence because nodes high up in the tree get e
nated by the upper bound. An additional advantage acc
because we are only interested in sequences with un
ground states. Therefore, as soon as two strings are fo
that satisfy the goalG, the search can be stopped for th
sequence. Our protocol of following the branches that ma
the sequence$s i% is intended to quickly identify strings
which satisfyG.

We now discuss how the tree is actually built. In order
take advantage of the natural clustering of structure strin
we choose to split each node at the position that makes e
of the two child nodes as tightly clustered as possible.
measure this clustering for each child as the sum of the ‘‘
tropies’’ for each bit, with the tightest clustering correspon
ing to the minimum entropy. Specifically, for each child w
evaluate the total entropyS of its set of structure strings as

S52Nchild(
i

~pi ln pi1qi ln qi !, ~2!

wherepi is the probability of thei th position being a 1, and
qi is the probability of thei th position being 0, average
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over all Nchild structure strings in the child node. We choo
to split each node at the position that minimizes the co
bined entropy of the two children.

The only remaining decision is when to stop splittin
When a node contains sufficiently few entries, it is fastes
just examine each entry in the node. Different stopping si
were tried, and 16 seemed to be optimal to minimize sea
time per sequence. Another consideration was mem
The memory used by the entries themselves
7 032 543*5535 162 715 bytes533.5 megabytes, but eac
node takes additional space. With the given stopping cr
rion, there were 1 384 679 nodes in the tree, and the t
space required was 70.5 megabytes.

Constructing a tree in this manner took a few hours o
200 MHz Pentium Pro. Once the tree was constructed,
rying out each search took, on average, about 800ms per
sequence, but this time varied widely from sequence to
quence.

For comparison, we also implemented a naive sea
algorithm in which the energy of a sequence is computed
each structure string. The tree-search algorithm ran appr
mately 1600 times faster than our best variant of the na
approach.

IV. COMPUTING ALL THE GROUND STATES

The tree-search algorithm allows us to quickly comp
ground states for each protein sequence in turn, and to re
those sequences with unique ground states, together with
corresponding structure string and energy value. When
this is done, we would also like additional statistics, such
the designability of each structure, i.e., for how many
quences it is the unique ground state. This and other stati
can be computed, after the fact, if the unique ground-s
solutions are stored.

Because our protein chains are directed, i.e., the
ends are not considered identical, both a structure and
oppositely directed partner are allowed.~Sometimes these
are the same structure.! As a result, if a particular sequenc
$s i% has a particular structure as a unique ground state,
the reversed sequence must have the reversed structure
unique ground state. For the 43333 problem, there are
therefore (235)1(217)534 359 869 440 possible sequenc
that need to be considered, counting all 36-bit binary stri
but rejecting reversed strings. There are 7 032 543 dist
structure strings. Since we are interested inuniqueground
states, each structure string is tagged with an additional b
indicate whether it represents exactly one, or more than
geometrical structure.

The overall computation is trivially parallelizable be
cause calculating the ground state for each sequence ca
done independently. In order to manage the calculation
ground states for all sequences in parallel, it proved usefu
divide the space of sequences into ‘‘bundles,’’ and use th
as the unit of parallelism. Instead of organizing these bund
by fixing some high-order bits of the 36-bit sequence$s i%
and varying the rest, we fixed an equal number of low- a
high-order bits, varying the bits in the middle. This way e
tire bundles could be eliminated as reversals of the seque
-
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in another bundle. We performed our computations with
bits fixed and 22 bits varying, which produced a total
(213)1(26)58 256 bundles.

These 8 256 bundles were executed on the NECI La
Array Multiple Processors~LAMP! system, which is a col-
lection of 28 computers, all containing 200 MHz Intel Pe
tium Pro microprocessors. Three machines were unipro
sors, the rest had two processors each. Every machine ra
Linux operating system and had at least 128 MB of memo
Each computation typically required about 10 MB
memory for itself, plus about 70 MB for the~read-only! tree
of protein structure information, which was shared
memory on the multiprocessors. The dual processors han
two independent bundles concurrently, and sharing the
was necessary to keep the total memory ‘‘footprint’’ of th
jobs small enough to fit together without conflict.

The distribution of bundles to ‘‘workers’’ was handle
by a single ‘‘master’’ machine running shell and AWK scrip
to poll the others, start new bundles, collect results, and
tect any crashes that might occur. The scripts were writte
be restartable with minimal lost effort in the event of a fa
ure affecting their own operation. As each bundle was co
pleted, a compactly coded binary output file was produc
At the end, all 8 256 output files were merged into a sin
450 MB result file. Auxiliary programs were written to ex
tract human-readable data from these binary files.

The complete computation ran for about 198 h, with
average of 39 processors running at any one time, givin
total of 7 805 CPU hours. Bundle execution times vari
from 23 s to almost 19 h, with a mean of 56.7 min.

V. RESULTS

Using the tree-searching algorithm and the LAMP sy
tem, we were able to completely enumerate the 43333 HP
lattice protein model. We found that 114 572 949 sequen
have unique ground states, which is about 0.3% of all
quences. In comparison, 0.09% of the sequences in
33333 model have unique ground states.

We associate to each structure a quantity cal
designability.13,20The designability of a structure is the num
ber of sequences having that structure as the unique gro
state. By this definition, if two or more structures share
same string representation then they have zero designab
since those structures can never be the unique ground sta
any sequence. Thus, only the 1 331 025 structures~and their
reverse paths! each of which has its own, unshared strin
representation can have nonzero designability. For th
structures, the average designability is 114 572 9
1 331 025586. However, the designability of these stru
tures has a very broad range: from 1 to 4 466.~The minimum
designability is 1 because the sequence with the same
string as the structure is guaranteed to have that structur
a unique ground state.! In Fig. 3, we plot the number o
structures with a given designability versus the designabi
One sees a long tail in the high designability region, cons
tent with previous results on the 33333 model13 and on
various two-dimensional models.13,20

Also consistent with these previous works, there are
ticeable geometrical differences between the highly des
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able 43333 structures and the less designable ones. In
4, we have plotted the average structure string^si& for highly
designable structures, and for all structures. Sincesi51 for a
core site, andsi50 for a surface site, the ensemble avera
^si& gives the probability that thei th monomer on the chain
occupies a core site. It is seen in Fig. 4 that for highly d
ignable structures the first few monomers on the chain t
to occupy core sites, while there is no such tendency for
average compact structure. The average ofsi for each chain
is exactly 1/3 because every 43333 structure has exactly
12 core sites (si51) and 24 surface sites (si50). Therefore
the tendency of the ends of highly designable structure
occupy core sites must be balanced by a tendency for the
of the structure to occupy surface sites. This is also see
Fig. 4—the central third of the chain for highly designab
structures has an increased probability to occupy sur
sites, on average.

In Fig. 5 we have plotted the two-point correlation fun
tion of structure strings,C( i , j )5^sisj&2^si&^sj&, averaged
over highly designable structures and over all structu
There is a clear correlation of site types, with a range
roughly one monomer in either direction along the cha
That is, if thei th monomer of a chain occupies a core si
there is an enhanced probability for monomersi 61 to oc-
cupy core sites. This simply represents a general geomet

FIG. 3. Histogram for the designability of structuresNS .

FIG. 4. The averagêsi& vs i. si51 for a core site andsi50 for a surface
site. The average is taken over all, top 100, top 1000, and top 10 000
designable structure strings, respectively.~For any single string, the averag
of si over the string is 1/3.!
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property of compact, self-avoiding structures.20 The correla-
tion length is slightly shorter for highly designable structur
@Fig. 5~b!#, implying more frequent transitions between su
face and core sites. In Fig. 6, we plot the number of tran
tions t between surface and core sites versus designab
NS . For clarity, only structures with selectedNS’s are in-
cluded in the plot. We see a weak positive correlation
tween t and NS , with a large variance for a givenNS . A
much stronger positive correlation between surface-c
transitions and designability was found in a two-dimensio
636 lattice model,29,30 possibly reflecting the larger mor
compact core in the two-dimensional model.

As an example, the topmost designable 43333 struc-
ture is plotted in Fig. 7. The geometry of this structure
consistent with the results shown in Figs. 4 and 5. The
core sites are equally divided between the two ends of
chain, with the center part of the chain,i 59 – 26, consisting
entirely of surface sites. Moreover, while the core sites te

st

FIG. 5. Two-point correlation functionsC( i , j ) of si , averaged over~a! all
structure strings and~b! over top 1000 most designable strings.

FIG. 6. The number of transitionst between surface and core sites vs de
ignability. Structures with a set of selectedNS’s are shown. Both the averag
~squares! and the rms deviations~error bars! for givenNS’s are plotted. Also
shown are the number of surface-core transitions for ten topmost design
structures~circles!.
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to cluster, the longest run of core sites is only threei
533– 35, consistent with the average correlation len
shown in Fig. 5.

The complete enumeration of sequences and struct
allows us to identifyall sequences with a given structure
their unique ground state. We can therefore analyze the
tistical properties of sequences that design a particular st
ture. For example, in Fig. 8, we have plotted the probabi
that a hydrophobic monomer occupies positioni, averaged
over all 4466 sequences that design the structure in Fig
Figure 8 therefore represents the complete mutation pa
of the topmost designable structure. The 12 core sites
easily identified since the probability of a hydrophob
monomer at these sites is nearly one. That is, nearly all of
4 466 sequences that design this structure have 1’s at t
12 positions. Similarly, the first three surface sites at
beginning of the chain and the last four surface sites at
end of the chain are always occupied by polar monom
Interestingly, the monomers in the central parts of the cha
i 510– 26, have a roughly 1/3 chance of being hydropho
even though all of these are surface sites. The mutation
tern therefore has the nontrivial feature that the monomer
some sites are critical for the stability of the ground st
while the monomers at other sites are freely mutable.

VI. DISCUSSION

The existence of highly designable structures emer
from a study of 33333 and 636 HP lattice protein models

FIG. 7. The topmost designable 43333 structure and its structure string
~There is another topmost structure of the same geometrical conform
with the reversed chain direction.!

FIG. 8. The mutation pattern for the topmost designable structure, show
Fig. 7. The3 ’s represent the structure string, with 1’s for core sites and
for surface sites.
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with interaction energies that included both solvation a
segregation components.13 A later study verified the exis-
tence of highly designable structures for HP lattice models
two dimensions including only solvation energies.20 More-
over, in two dimensions, there was little change in the qu
tative behavior of designability with increasing structu
size, suggesting that highly designable structures persis
to realistic protein chain lengths. Within the 33333 solva-
tion model, however, only 120 (0.1%) out of the 103 3
total structures have nonzero designability.@These 120~60
lattice conformations! stand out as highly designable stru
tures with the largest average gaps in the solvation plus
regation model of Li et al.13# It has remained unclea
whether the solvation model in three dimensions can prod
a significant fraction of highly designable structures at re
istic protein chain lengths. The current study, extending
solvation model up to 43333 structures, offers strong evi
dence that the existence of highly designable structures
general feature of solvation models in three dimensions.

To understand the ubiquitous appearance of highly d
ignable structures, it is helpful to review the geometrical
terpretation of designability for the solvation model.20 To this
end, the energy in Eq.~1! is rewritten as

E5
1

2 (
i 51

N

@ us i2si u2us i u2usi u#. ~3!

The last term is constant for a given sequence, and
second-to-last term is constant for all compact structu
Therefore, the ground state for a given sequence is de
mined by the first term alone, which is one-half the Ha
ming distance between the sequence string and the stru
string. Simply put, the structure nearest to a sequence i
ground state. The designability of a structure is thus equa
the number of sequences that lie closer to it than to any o
structure.

This geometrical interpretation suggests that highly d
ignable structures are those with few nearby compet
structures. To test this, we have plotted in Fig. 9 the num
of neighboring structures, as a function of Hamming distan
between structure strings, for the topmost designable st
ture and for structures of intermediate (NS5100) and low
(NS51) designability. It is seen that high designability im
plies a reduced number of neighbors, and this correla
persists out to distance 10~structures whose strings differ b
interchange of five surface and core sites!. For comparison,
we have also plotted in Fig. 9 the expectedn(d) if the
14 062 236 structure strings were uniformly distributed
the hyperplane given by the constraints(si512 and (
(21)i3si50. The second constraint comes from the fa
that the 43333 cubic lattice is a bipartite lattice, so that fo
any structure there are six core sites withi even and six core
sites with i odd.31 The total number of points in the hype
plane is (C18

6 )25344 622 096, whereCn
m5n!/m!(n2m)!.

The number of points in the plane at a Hamming distan
d523 l from a given point is simply: N(d)
5(k50

l C6
kC12

k C6
l 2kC12

l 2k , with Cn
m50 if m.n. The expected

n(d) is then r3N(d), where r514 062 236/344 622 096
'0.04 is the average density of real structure strings in
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hyperplane. We see that the structure strings are more c
tered than the uniform distribution—the lower the desig
ability, the more clustered they are.

A scarcity of near neighbors corresponds to a narr
width of the distribution of neighbor distances, since eve
structure has the same total number of neighbors. We h
therefore plotted in Fig. 10 the width of the distribution
neighbor distances over the entire range of designability.
width falls smoothly with increasing designability, indicatin
a general correlation between high designability of a str
ture and a scarcity of nearby competing structures.

FIG. 9. Number of structure stringsn(d) at Hamming distanced from a
given structure string.~a! For the top structure;~b! for 6 structures with
NS5100; ~c! for 6 structures withNS51. In each case, the circles are
Gaussian distribution with the same mean and variance. The dotted li
the expectedn(d) if the strings were uniformly distributed.

FIG. 10. The second momentD2([^d2&2^d&2) of distribution of neighbor
distancesn(d) vs the designability. The error bars indicate the rms dev
tions ofD2 for givenNS . The circles areD2 for the ten topmost designabl
structures.
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The existence of highly designable structures can the
fore be viewed as a geometrical property of the space
structure strings. For the two-dimensional solvation mode
has been stressed20 that the most highly designable structur
fall in regions of low density in the space of structure string
In this sense, highly designable structures have ‘‘atypic
patterns of surface and core sites. The current work exte
this conclusion to a three-dimensional solvation model w
chain lengths (N536) approaching those of real proteins.

Many aspects of real proteins are not addressed by
simple lattice model. Interactions such as hydrogen bon
salt bridges, disulfide bonds, and detailed sidechain pac
are beyond the model’s minimal representation of hydrop
bicity and excluded volume. Moreover, real proteins cont
secondary structures (a helices andb strands!, and come in
a variety of sizes and shapes. What aspects of our m
study pertain to the more complex world of real protein
First, the overall notion of designability—that some stru
tures have intrinsically better folding properties th
others—has potentially broad application. Studies of RN
folding32 and off-lattice protein models33,34both yield highly
designable structures. Second, insofar as hydrophobic
terning is a dominant factor in the folding of real protein
the model result that high designability correlates withatypi-
cal hydrophobicity patterns may have real significance.

In summary, we have employed a fast tree-search a
rithm to find the ground states of all sequences for a 433
33 lattice HP model of proteins. The results confirm t
existence of highly designable structures in a thr
dimensional solvation model with a surface-to-core ratio
2-to-1, close to the values for small natural proteins. Hig
designable structures are found to differ geometrically fr
other structures. Interestingly, structures are found to h
nontrivial mutation patterns with some sites strictly co
served and others mutable. The fast tree-search algorith
particularly well suited to lattice HP solvation models, a
we hope our detailed description of the method will pro
useful.
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