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Mitochondrial Network Size Scaling
in Budding Yeast
Susanne M. Rafelski,1,2*† Matheus P. Viana,3† Yi Zhang,1,4 Yee-Hung M. Chan,1,2 Kurt S. Thorn,1

Phoebe Yam,5 Jennifer C. Fung,5 Hao Li,1,2 Luciano da F. Costa,3 Wallace F. Marshall1,2*

Mitochondria must grow with the growing cell to ensure proper cellular physiology and
inheritance upon division. We measured the physical size of mitochondrial networks in budding
yeast and found that mitochondrial network size increased with increasing cell size and that this
scaling relation occurred primarily in the bud. The mitochondria–to–cell size ratio continually
decreased in aging mothers over successive generations. However, regardless of the mother’s age or
mitochondrial content, all buds attained the same average ratio. Thus, yeast populations achieve a
stable scaling relation between mitochondrial content and cell size despite asymmetry in inheritance.

The amount of mitochondria in the cell
varies in response to metabolic demands
(1), requiring active size regulation mech-

anisms. The mitochondrial to cell size ratio is
relatively constant in mammalian cells (2) and
two yeast species (3, 4). We used the budding
yeast Saccharomyces cerevisiae to study how
the relationship between mitochondrial and cell
size is achieved in cells growing and dividing
asymmetrically (fig. S1). Yeast mitochondria

are three-dimensional (3D) networks of dynam-
ic membrane-bound tubules localized at the cell
periphery (5). To study mitochondrial size scaling,
we developed a method to quantify the 3D skel-
etons of mitochondrial networks (Fig. 1A and fig.
S2) using spinning disk confocal z-stacks of live
yeast cells expressing mitochondrial matrix-targeted
green fluorescent protein (GFP). We converted
network length to mitochondrial volume (mm3),
assuming a constant tubule diameter. Absolute

network length accuracy was within 85% of man-
ual measurements, with an average reproduc-
ibility of 96% (6).

We imaged time courses of live yeast cells grow-
ing for one to two generations and measured the
total cell and mitochondrial volumes for mother
and bud compartments. We found a strong corre-
lation between total mitochondrial and cell vol-
umes (Fig. 1B). However, when we compared
mother and bud compartments separately, the
constant mitochondrial volume ratio found in the
population as a whole was dominated by the scal-
ing in the bud (Fig. 1, C and D). Mitochondrial
volume ratio in the buds increased and then
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Fig. 1. Mitochondrial-cell size scaling is strongest
in the bud. (A) Example of a mitochondrial network
graph (blue), generated from 3D confocal images
of a mitochondrion (yellow), imaged using matrix-
targeted GFP in a live yeast cell. (B) Mitochondrial
volume versus cell size for all cells analyzed in the
time-course population (n = 1430 cells), including
budding and nonbudding cells. The population
maintained a consistent average mitochondrial to
cell volume ratio. (C and D) Mitochondrial volume
in the bud or mother and (E and F) Mitochondrial
volume ratio in the bud or mother versus bud or
mother size, respectively, for all budding cells (n =
1053 cells). (C and D) Buds displayed a much
stronger correlation between mitochondrial and
cell volume than mothers. Pearson’s correlation
coefficient, r, and significance value, P, are shown.
Values for r and P on left and right sides in (E) are
for the bud population greater/less than 40 mm3.
Yellow lines indicate rolling average.
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leveled off when buds were about half their final
size (Fig. 1E). Bud size reflects the progression of
budding, suggesting that buds accumulate mito-
chondria until they reach a set point ofmitochondrial
volume relative to bud size. In contrast, in mothers
the mitochondrial volume ratio decreased with
increasing cell size (Fig. 1F). Mother size reflects
generational age (7), suggesting that older mothers
do not preserve the mitochondrial volume ratio set
point that they inherited when they were buds.

Analysis of the dynamics of cell growth and
mitochondrial accumulation during budding time
courses revealed dramatic asymmetry in mito-
chondrial accumulation between mother and bud
(Fig. 2). During budding, mothers experienced
an overall loss of both mitochondrial volume and
the resultant volume ratio, while at the same time
mitochondrial content increased in the bud pro-
portional to bud growth (Fig. 2 and figs. S3 and
S4). The mitochondrial accumulation rate in
mothers was most negative at the moment that
it was greatest in the bud (fig. S3B), suggesting
that the bud might gain mitochondria at the
expense of its mother. Although first and 2+ gen-
eration mothers differed significantly in cell size
and mitochondrial content at the start of bud-
ding, the average kinetics of both bud growth

and mitochondrial accumulation in their buds
was indistinguishable (Fig. 2C and fig. S3), re-
sulting in the same average volume ratios at
division (Fig. 2D). Thus, regardless of the initial
size or mitochondrial content of mothers, they
generate, on average, identical buds and do so
with the same dynamics throughout budding.

Yeast cells displayed “mitochondrial content
asymmetry” with a lower mitochondrial volume
ratio in the mother than in the bud upon division
(Fig. 2D). We asked whether mitochondrial con-
tent is replenished during theG1, unbudded, phase
of the cell cycle. The mitochondrial volume ratio
tended to increase for cells with lower, and de-
crease for cells with higher, initial volume ratios
(Fig. 3A and fig. S5), suggesting a partial homeo-
static restoration toward a unique mitochondrial
volume ratio set point.We found no evidence that
cells delayed G1 exit in response to a decreased
volume ratio (fig. S6), but instead that cells may
respond to deviations in the appropriate volume
ratio by adjusting their rate of mitochondrial bio-
genesis (Fig. 3B and fig. S7). Analysis of mito-
chondrial content versus generational age (Fig. 3C)
showed that sequential loss during budding and
partial regain during G1 resulted in continual loss
of mitochondrial volume ratio in aging mother

cells (Fig. 3D and figs. S8 and S9). However,
these much older mothers still generated buds
with the same average volume ratio at division.
By generating buds with identical mitochondrial
content, the population can renew and maintain a
narrow distribution ofmitochondrial volume ratios
despite asymmetry in the inheritance of mitochon-
drial content between mother and bud (fig. S10).

There are two possibilities for how proper mi-
tochondrial volume ratio is achieved in the bud: a
passive mechanism not modulated as a function of
mitochondrial content, where scaling would arise
inherently [e.g., allometric growth (8)], or an active
mechanism capable of sensing and feedback. In the
passive case, a delay in mitochondrial inheritance
would lead to fewer mitochondria entering the bud
and a decreased volume ratio in the newbornmoth-
ers. In the active case, cells could sense and com-
pensate for the delay to achieve the target volume
ratio in the bud upon division. In Dypt11 mutants,
which exhibit delayed appearance of mitochondria
in the bud (6, 9, 10), we found that while budswere
delayed in mitochondrial inheritance (figs. S11 and
S12), their volume ratio increased rapidly such that
volume ratios in Dypt11 and wild-type buds were
indistinguishable at division (Fig. 4, A and B),
consistent with an active mechanism. Meanwhile,
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mother mitochondrial content increased transiently,
presumably because mitochondria could not be
redistributed into the buds. Mother-daughter mito-
chondrial content asymmetry was thus eliminated
in the absence, and was enhanced with over-
expression, of Ypt11p (Fig. 4C), suggesting that
Ypt11p contributes to this asymmetry. However, in
all three cases, the proper volume ratiowas achieved
in the bud at division. We thus propose that yeast
cells can somehow sense mitochondrial accumu-
lation kinetics in the bud and respond to ensure
that the target volume ratio is achieved in time for
division. The compensatory behavior observed in
Dypt11mutants likely involves one or both of the
remaining mitochondrial inheritance pathways
(6, 10), which themselves may also contribute to
mother-daughter mitochondrial content asymmetry.

Dypt11 buds could potentially reach the prop-
er mitochondrial volume ratio by slowing their
growth and “waiting” for the delayed mitochon-
drial content to catch up. We analyzed time courses
of Dypt11 cells and found that buds indeed grew
at slower rates and for a longer time before di-
vision (Fig. 4D).Mutantswith the longest budding
durations exhibited greatly decreased mitochon-
drial volume ratios at the time when normal
Dypt11cells would divide (fig. S13). However,
Dypt11 cells divided with buds of a smaller size
than wild-type buds, suggesting, unexpectedly,
that cell size may be affected by mitochondrial
inheritance kinetics. Yeast cell size is known to
respond to changes in metabolism brought about
by nutritional environment (11), suggesting per-
haps that a delay in mitochondrial inheritance
somehow altered the cell’s metabolic state even
though its environment remained unchanged.

We testedwhether simply delaying redistribu-
tion of mitochondria into the bud could alter the
age-dependent loss of volume ratio observed in
wild-type mothers (Fig. 3D). Aging Dypt11moth-
ers lost mitochondrial volume ratio much more
slowly than wild-type mothers (Fig. 4E and fig.
S14). Replicative life-span distributions of Dypt11
mutants (6) were similar toDmmr1mitochondrial
inheritance mutants (12). The Dypt11 distribution
was statistically bimodal (6), consisting of a shorter-
lived population, not seen in wild type, and a
longer-lived population with both a slightly in-
creased average and significantly increasedmaxi-
mum life span compared with wild type (Fig. 4F
and fig. S15) (6). Because of their decreased life
spans, short-lived Dypt11 cells represent a de-
creasing proportion of the aging Dypt11 popula-
tion (e.g., 19 and 5% of cells at generations 6
and 10). Thus, the Dypt11 cells with increased
mitochondrial volume ratios at later generations
consisted almost entirely of the second popula-
tion with a longer life span than wild-type cells.
Thus, in addition to the quality of mitochondria
retained in the mother (12), their quantity may
also contribute to their replicative life spans.

The failure of mother cells to maintain mito-
chondrial volume ratio suggests that they either
cannot sense reduced content or are unable to
compensate for the loss. Failing to preserve her
own mitochondrial volume ratio could be the
cost incurred for generating the healthiest, fittest
offspring upon division.
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Fig. 4. Mitochondrial accumulation dynamics and
aging in Dypt11mutant. (A) Wild-type and (B) Dypt11
buds reach the same mitochondrial volume ratio at
division despite different accumulation dynamics dur-
ing budding. Mitochondrial volume ratio of (A) wild-
type and (B) Dypt11 mothers (green and turquoise,
respectively) and buds (purple and magenta, respec-
tively) as a function of progression of budding. Average
time-course behavior was obtained by converting bud
sizes from single time-point data into progression of
budding (fig. S16). Thick and thin lines indicate the
rollingaverageand95%confidence interval, respectively.
(C) Ypt11p is involved in generating mother-daughter
mitochondrial content asymmetry. The averagemitochon-
drial volume ratio at division forwild-type (n=39 cells),
Dypt11 (n = 28 cells), and Ypt11p-overexpressing
(Ypt11+) (n = 36 cells) (12) mothers (m) and buds (b).
Asterisks: P= 1.9 × 10−5 and 5.6 × 10−9 by rank sum.
(D) Average bud growth rate, duration of budding (n =
56 and 24 cells for wild-type and Dypt11 buds, re-
spectively), and bud size at division (n = 106 and 53
cells, respectively) for wild-type (purple) and Dypt11
(magenta) buds during budding. Asterisks: P = 5.3 ×
10−6, <1×10−14, and4.6×10−4 by rank sum. (E) Age-
dependent loss of mitochondrial volume ratio from mothers. The average
mitochondrial volume ratio for wild-type (green) and Dypt11 (turquoise) mothers of
increasing generational age. Darker first-generation data points represent average
values of mothers at their “birth” (6). Error bars: T95% confidence intervals and
numbers of cells in (6). (F) Replicative life-spanhistogram for wild-type (green,n=36

cells) andDypt11 (turquoise, n= 80 cells) cells calculated using live-cell imaging in a
microfluidic device (6). TheDypt11distributionwas found to bebimodal, consistingof
two Gaussian-like populations (light and dark turquoise curves), and the maximal life
span (cells living beyond 30 generations) (fig. S15) was found to be significantly
higher for Dypt11 than for wild-type cells [statistical details in (6)].
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