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Regulatory element detection using
correlation with expression
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We present here a new computational method for discovering cis-regulatory elements that circumvents the need to

cluster genes based on their expression profiles. Based on a model in which upstream motifs contribute additively to

the log-expression level of a gene, this method requires a single genome-wide set of expression ratios and the

upstream sequence for each gene, and outputs statistically significant motifs. Analysis of publicly available expression

data for Saccharomyces cerevisiae reveals several new putative regulatory elements, some of which plausibly control

the early, transient induction of genes during sporulation. Known motifs generally have high statistical significance.
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Introduction
The availability of complete genome sequences has coincided with
the development of technologies to monitor mRNA expression
across the genome1–4. These expression data provide a global view
of transcriptional regulation, but new methods of analysis are
needed to extract biologically meaningful information. The DNA
sequence elements that act as binding sites for transcription factors
coordinate the expression of genes in whose regulatory region they
appear, and are key to reducing the complexity of the observed
expression patterns. One method for discovering them groups
genes into disjoint clusters based on similarity in expression profile
over a large number of different conditions5,6. The upstream
regions of the genes in the cluster can then be analyzed for the pres-
ence of shared sequence motifs7–9. But the correlation between gene
cluster and motifs is imprecise in both directions: there are genes in
the cluster without the motif, and many genes with the motif do not
respond. If gene control is multifactorial, groups of genes defined
by a common motif will not be mutually disjointed, and partition-
ing the data into disjoint clusters will cause loss of information.

A natural and computationally efficient way to quantify the
extent to which regulatory sequence elements can explain
changes in genome-wide expression data is to fit the logarithm of
the expression ratio to a sum of activating and inhibitory terms,
each tied to a particular sequence motif (see Eq. (1) in Methods).
Our algorithm selects the most statistically significant motifs
from the set of all oligomers up to a specified length, dimers (two
oligomers with a fixed spacing) and groups thereof based on
sequence alignment. There are no adjustable parameters other
than a probability cutoff on statistical significance, and plots of
the fitting parameters as a function of time or conditions can sug-
gest biological function. Because all genes are fit, our method is
sensitive to the multifactorial nature of transcription control.

Results
We have applied our algorithm to publicly available data sets for
yeast from microarray experiments on the diauxic shift10, sporu-
lation11 and cell cycle12,13. We used a sampling of these data to
illustrate four aspects of our algorithm: (i) the iterative selection
of motifs to optimize their independence; (ii) the construction of
weight matrices from groups of significant dimers; (iii) following
the fitting parameters as a function of time to infer function; and

(iv) analyzing the modulation of a consensus motif by variable
positions and flanking bases (complete results are available at
http://regulome.bio.uva.nl/REDUCE/).

Definitions
We define Ag as the logarithm base two of the expression ratio for
gene g, and will refer to it as the expression level. For each motif,
there is a parameter F, giving the contribution to the expression
level for each occurrence in the regulatory region of the gene (see
Eq. (1) in Methods). Motifs can be scanned for significance by fit-
ting a single-motif model to the data for all genes, or all members
of a group of significant motifs can be simultaneously fit.

The quality of the fit is measured by χ2, the variance of the differ-
ence between the experimental and model values for Ag, normal-
ized so that χ2=1 in the absence of any fitting parameters. The
reduction in χ2 when a motif is added as a model parameter is
denoted by ∆χ2 and represents a natural measure of motif signifi-
cance to which a confidence or P value can be assigned (which we
also verified by scrambling the expression data). For the zero time
culture of Chu et al.11 compared against itself, or the nonperiodic
genes in Spellman et al.13, the Ag are normally distributed with a
variance var(Ag)≈0.06 (or a 25% fluctuation in expression ratio
around unity), which sets a lower bound on the reduction in χ2.

Finding motifs relevant to cell cycle
Our iterative scheme for selecting motifs is conveniently illustrated
by the 14-minute time point data for the α-factor synchronized cul-
tures of Spellman et al.13, located near the M/G1 boundary of the
cell cycle. When all oligomers up to 7 nt in length are tested for cor-
relation with expression level, the strongest element found is the
repressive AAAATTT with ∆χ2=3.4%, corresponding to a P≤10–12

(Table 1). The 20 strongest motifs are shown, including several vari-
ants of AAAATTT. These motifs are compatible with motif M27
(ref. 14). When the model based on AAAATTT is subtracted from
the experimental values, the signal for related motifs also disappears
and the residuals are used to re-rank all oligomers up to heptamers.
The new top-scoring motif is now ACGCGT, the well-known G1
element MCB (ref. 13), which is positively correlated with expres-
sion (that is, F(single) is positive). Continuing the iteration while
P<0.01 yields a set of 11 motifs (Table 2). In addition to the two
motifs already mentioned, the model contains the well-known

©
20

01
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/g

en
et

ic
s.

n
at

u
re

.c
o

m
© 2001 Nature Publishing Group  http://genetics.nature.com



stress response element (STRE) occurring in both directions (as
CCCCT and AGGGG); the motifs CGATGAG and TGAAAA (M3a
resp. M3b in ref. 14); CTCATCG, the reverse complement of
CGATGAG; the motif TAAACAAA, similar to the SFF motif
GTMAACAA (ref. 13); and two seemingly new motifs, CCTCGAC
and TGACG. Comparable fits for all other data sets are on our web
site (http://regulome.bio.uva.nl/REDUCE/).

We checked that our motifs contribute in an independent and
linear way to expression in two ways: (i) the F value based on a
single motif differs by at most 50% from the value obtained by
simultaneously fitting multiple motifs in Table 2; and (ii) the sin-
gle motif fits for the STRE element AGGGG using separately
ORFs with exactly one, two or three copies all gave F values
within 30% of each other.

Adding words incrementally to the model is efficient: in the first
pass there are 192 motifs in which P<0.01, but there are only 11
motifs in the final model, which achieves a combined χ2 reduction
of 13.6% when fit to the original data. Based on the values of

var(Ag)≈0.12 for the data set we
analyzed and the experimental
noise level of var(Ag)≈0.06, we
estimate the maximum achiev-
able χ2 reduction to be 50%. The
fit does not improve when
motifs are allowed to contain up
to two IUPAC symbols.

We have also searched for
‘dimer’ patterns of the form
oligo–gap–oligo, in which each
oligomer can have a length up
to 4 nt, and the gap varies from
one to ten. For the same 14-
minute data used above, we
obtained a cluster of significant
dimers (Table 3), which is com-
patible with the MCM1 site

discussed in Spellman et al.13. When a single F is used for all
members of the group, ∆χ2=0.010 (P∼ 10–5). Generalizing to a
weight matrix15 W (see Methods and Table 4), replacing the inte-
ger copy number of the motif in Eq. (1) by the information score
of the best match of W to the upstream region and using an opti-
mal information score threshold Smin=9, we obtained
∆χ2=0.018, an 80% improvement over the dimer cluster. After a
model fit based on all ten Spellman motifs and our MCM1
matrix is subtracted from the data, a few dozen highly significant
dimer groups remain (including those similar to TGAA-4-TTTT,
GAT-4-TGA, CTG-5-CCT and AGG-10-AAC).

In the paper by Spellman et al.13, ten motifs were found that are
over-represented in one or more expression clusters. We performed
single-motif fits for all of these for each time point in the data set of
Spellman et al.13 and took the time with the most significant P value
(which was discounted by the number of time points selected
from). For five motifs, ACGCGT (MCB), CRCGAAA (SCB),
RRCCAGCR (Swi5p), ACRMSAAA and GTMAACAA (SFF), the
correlation is significant, P≤10–3. Our algorithm identified motifs
identical or very similar to all of these (ACGCGT, CGCGAAA,
CACGAAA, AACCAGC and GTAAACA). We also verified that fit-
ting our motifs first greatly reduced the ∆χ2 associated with the
homologous motif of Spellman et al.13 and conversely. The correla-
tion for the remaining five motifs was less significant. Nevertheless,
our algorithm identified the motif CCACAGT, which closely
matches CCACAK, whose reverse complement is similar to the site
AAACTGTGG associated with the Met31/32p cluster. Our algo-
rithm did not find any motifs similar to the ‘histone’ motif ATGC
GAAR, and AGAAGAAA and GCSCRGC.

Tavazoie et al.14 analysed the cell-cycle data of Cho et al.12 and
obtained 17 motifs (many nonperiodic), of which we identified
nine (MCB, SCB, STRE, Met31/32p, M3a, M3b, M27, M4 and
M14a). We failed to identify Cbf1, Rap1p, M5 and ECB, the latter
two because their weight matrices have more than one gap, so go
beyond our dimer class. The four remaining motifs (M1a, M14b,
M13 and M26) show no significant correlation with expression
for any time point, and we found no similar motifs.

Time courses for cell cycle and sporulation motifs
We fit each expression pattern separately; thus it is informative to
plot the value of F(single) for a given motif as a function of time, as
illustrated for four cell-cycle motifs: MCB, SCB, MCM1 and SFF
(Fig. 1). A small but significant lag between the peaks in the MCB
and SCB motifs, previously known by collating the expression of
individual genes13, is visible, as is a new result that the MCM1 and
SFF factors are antagonistic (out of phase). Spellman et al.13 gave a
combined consensus pattern for these two motifs which should not
be construed to imply synergism. The MCM1 and SFF motifs (Fig.
1b) occur sufficiently often in the genome that it is meaningful to
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Table 1 • Significant regulatory motifs for cell cycle

Motif ∆χ2 F(single) Matches ORFs

AAAATTT 0.033534 –0.119555 1564 1331

AAATTTT 0.031324 –0.116968 1516 1291

ACGCGT 0.024535 0.209973 327 289

CGATGAG 0.022773 –0.249775 251 243

GATGAGC 0.019932 –0.275629 186 184

AAATTT 0.019839 –0.060756 3377 2426

AGGGG 0.019754 0.105028 1065 907

GATGAG 0.019091 –0.125441 756 669

AAAATT 0.018169 –0.057483 3663 2611

ACGCG 0.017018 0.103656 939 803

AAGGGG 0.017006 0.154128 476 447

AATTTT 0.015638 –0.051099 3644 2546

AATTTTT 0.014863 –0.075695 1633 1354

CTCATCG 0.014836 –0.206987 241 235

GGGG 0.014271 0.040594 2903 1742

AAAAATT 0.013716 –0.073302 1715 1445

CGCGT 0.013403 0.091417 948 803

TGACGCG 0.013336 0.328217 84 82

GACGCGT 0.012535 0.319782 79 75

CTCATC 0.012318 –0.094246 811 695

Detection of upstream sequence elements relevant to the genome-wide
expression pattern for the 14-min time point in the α-synchronized cell-cycle
experiment of Spellman et al.13. Motifs were chosen from the set of all
oligonucleotides up to heptamers. Shown are motifs ranked by ∆χ2, that is, the
relative reduction in the error between the experimental data and a linear
model based on a single motif. Only the first 20 motifs are shown out of a set
of 21,844. For a definition of the listed quantities see the Methods section; for
all motifs shown, P<10–6; the number of upstream matches and the number of
ORFs in which matches occur is also listed.

Table 2 • Final result of the iterative motif finding procedure

Motif ∆χ2 F(single) F(multi) Matches ORFs

AAAATTT 0.033534 –0.119555 –0.080316 1564 1331

ACGCGT 0.024535 0.209973 0.211215 327 289

AGGGG 0.019754 0.105028 0.101450 1065 907

CGATGAG 0.022773 –0.249775 –0.200283 251 243

CTCATCG 0.014836 –0.206987 –0.179062 241 235

CCTCGAC 0.008866 0.350493 0.323390 49 48

CCCCT 0.007516 0.061382 0.060757 1146 954

TAAACAA 0.003290 –0.060218 –0.069649 610 565

ATTTTT 0.009661 –0.032125 –0.021880 5260 3167

TGACG 0.008097 0.068384 0.053070 1145 1012

TGAAAA 0.008472 –0.041577 –0.030628 3139 2325

Using a P value cutoff of 0.01, a model containing 11 motifs is constructed,
using the same expression data as in Table 1.

Table 3 • Dimer alignment
for MCM1 binding site

.ACC.....AGGA.

.ACC......GGAA

..CCTA...AGGA.

.ACCT...AAGG..

..CCT.....GGAA

..CCTA....GGAA
TACC....AAGG..
.ACCT.....GGA.
.ACCT....AGGA.
TACC......GGA.
TACC.....AGGA.
.ACCT.....GGAA
TACC......GGAA

Automatically generated alignment
of significant dimers compatible with
MCM1 site. Data used are same as in
Table 1.
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investigate nonlinear interactions between them by fitting the
model: A = FMCM1NMCM1 + FSFFNSFF + FMCM1+SFFNMCM1NSFF.
The fit does not significantly improve.

We determined the expected time courses for the early (URS1)
motif DSGGCGGCND and the middle sporulation motif DNCR-
CAAAW (MSE) for the data of Chu et al.11 (Fig. 1c). The motif
CWBYSCTTT, proposed as a potential inducer for mid-sporulation
genes by Chu et al.11, gave no signal. By contrast, the strong signal
we obtained for the mitotic MCB element, ACGCGT, indicates a
role in sporulation that was not detected by clustering genes11. We
also observe that the induction profiles for the reverse complement
of MSE are similar to those for MSE itself, indicating bidirectional
binding of the associated factor (Ndt80). We plotted the complete
time course for all motifs that are significant at early times, reveal-
ing several new early inducers and repressors (Fig. 1d). In the for-
mer category are GATAAG, which is known to have a role in
nitrogen response9,16, as well as CCACAGT and ATGACT, which
seem new and whose reverse complements are also inducers. In
Chu et al.11, a ‘metabolic’ cluster of early and transiently induced
genes was identified; 37 (versus 17 expected by chance) of the 49
genes in this cluster have a match to at least 1 of these 5 motifs in
their upstream region. We also found that four cell-cycle regulatory
motifs, AAATTTT, CGATGAG, TGAAAAA and CTCATC (Table
2), function as early time repressors in sporulation and reach their
maximum negative values at 0.5 hours.

Modulation of the MSE motif in sporulation
The MSE element DNCRCAAAW is responsible for the induction

of a large number of genes in the middle and late stages of sporu-
lation11. Yet only 17% of the 700 genes in which it occurs respond
by more than twofold at some point during sporulation. To locate
other elements that might discriminate between the active and
inactive genes, we fitted just these 700 genes. When motifs up to 8
nt and containing up to 2 IUPAC wild cards are used, 3 significant
motifs are found, and ∆χ2 is 26%, but they all overlap with either
MSE or its reverse complement (Table 5).

To look specifically for flanking bases, we used a site-specific fit-
ting scheme, where Bi stands for the presence of nucleotide B at
position i of a wild-card–containing consensus motif when it is
matched to the upstream region of a gene. To allow for an investiga-
tion of both the variable positions and the flanking regions of the
MSE motif, we used the pattern N5CRCAAAWN5 to ‘anchor’ vari-
able sites relative to the MSE core. Thus, A7 corresponds to having
an A at the R-position, and F(single) then measures the corre-
sponding change in induction/repression relative to the average
effect of having an upstream match to any oligonucleotide compat-
ible with CRCAAAW. Having R=A or W=A leads to an increase in
expression level, whereas having R=G or W=T has a suppressive
effect (Table 6). The total reduction in variance achieved with this
site-specific model fit is 14%, using 8 significant parameters from a
total set of 2·2 + 10·4. The implications, however, are similar to the
three-motif fit (Table 5) as regards the most significant bases.

Discussion
The approach of clustering genes on the basis of their expression
profile across many experiments reduces experimental noise and

is well suited for uncovering
groups of genes (for example,
ribosomal proteins or histones)
that co-vary under most cir-
cumstances. Cis-regulatory ele-
ments often then can be found
that ‘explain’ the clusters5.
Most genes, however, are not
part of such a ‘synexpression
group’17. Their regulation is
combinatorial and results from
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Table 4 • Weight matrix for MCM1 binding site

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A 111 135 135 121 83 266 0 0 69 148 151 132 167 192 0 0 354 274 191 132 131

C 86 64 61 58 70 31 389 389 48 67 59 80 63 42 0 0 13 30 48 60 59

G 70 73 71 56 70 37 0 0 44 83 75 51 54 62 389 389 10 27 76 76 93

T 122 117 122 154 166 55 0 0 228 91 104 126 105 93 0 0 12 58 74 121 106

Automatically generated weight matrix for the MCM1 binding site obtained by tallying base counts for all matches to the alignment in Table 3. Data used are
same as in Table 1.
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Fig. 1 Time courses for cell cycle and
sporulation. Parameter F (Eq. (1)) for
a single-motif fit to genome wide
expression data, plotted versus time.
a, α-factor-synchronized cell-cycle
data13 showing the relative phasing
of the MCB and SCB motifs. b, Same
for the MCM1 motif as defined in
Table 3 and the SFF motif. c, Several
motifs discussed in ref. 11 for sporula-
tion: URS1, a regulator of early genes;
MSE, the mid-sporulation element;
and a putative element CWBYSCTTT,
which we find not to be significant
within our fit. In addition, we find the
known cell-cycle motif ACGCGT to be
significant in this context. d, Several
new motifs including inhibitory ones
for which F(single) is negative.
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the integration of various signals through the cooperative or
competitive binding to multiple sequence elements in the pro-
moter region. There are inherent limitations to clustering meth-
ods that do not take the DNA sequence into account. It is also
hard to assign a confidence value to the output of a clustering
algorithm. On the other hand, expression clustering would link
genes controlled by a regulatory cascade even if it involves many
different transcription factors and binding sites.

Our approach to the discovery of regulatory elements from
expression data is a quantitative expression of the widespread
notion18 that transcription initiation occurs through the recruit-
ment of the polymerase by reversible binding to transcription fac-
tors and hence to the regulatory sequences. We fit the logarithm of
the expression ratio, a surrogate for the binding free energy, to a
sum of contributions from the available motifs. The response is not
binary. We find from a large pool of potential motifs those that best
correlate with the data. Each motif contributes a fixed increment to
the expression, F, which can be of either sign, corresponding to
enhancement or inhibition. All genes are fit; inactive genes that
contain known functional motifs are particularly informative for
inhibitory motifs, co-activators for the original site or the influence
of position on the activity of a factor.

Using the cell-cycle and sporulation experiments as examples, we
reconfirmed almost all motifs found by clustering methods, at least
to the extent of finding a related sequence motif that captures the
same experimental signal. We have numerous examples that point to
combinatorial effects in transcription regulation, or groups of genes
that co-vary in one circumstance but vary differently in another, for
which expression-based clustering would be poorly suited. For
instance, the MCB element is important for mitosis, but also has a
role in sporulation, in a way that was not picked up by clustering11.
The F value for MCB is in fact larger than the canonical MSE and
URS1 motifs, presumably because the latter also occur in many inac-
tive genes. We found several new factors implicated in early stages of
sporulation that together accounted for 16% of the experimental
variance, and are candidates for combinatorial control (for example,
one is a known nitrogen regulator). The antagonistic effects of
MCM1 and SFF are another example, for which clustering analysis
only revealed co-occurrence in one gene cluster13.

We have uncovered another plausible instance of combinator-
ial control by analysing the absolute mRNA levels in the wild-
type reference cultures of Holstege et al.19, for which the
logarithm of the mRNA level is close to normally distributed.
Our analysis picked up several motifs, among them a group of
dimers (and associated weight matrix) corresponding to the
binding motif TC-7-ACG for the general factor Abf1p (refs.
20,21), whose correlation with expression had the same signifi-
cance level as did the MCM1 motif with the cell-cycle data.
Matches are found in 1,796 genes and thus occur in combination
with a variety of other, more specific factors. Holstege et al.19

searched for regulatory effects associated with components of the
general transcription apparatus by comparing wild-type cells
with temperature-sensitive mutants, but partial information is
implicit already in their reference cultures.

Our linear model, corresponding to independent cis-regulatory
elements, accounts for at best 30% of the total signal present in
genome-wide expression patterns, and there are many directions
for improvement. We assumed any motif 600 bp upstream of the
translation start site was equally effective in regulating transcrip-
tion, but location relative to the TATA box should certainly matter.
For higher organisms with clusters of regulatory sites far upstream,
interspecies comparisons will be essential to filter out the junk DNA
and leave a manageable set of loci to be fit to expression22,23. Our
model is more plausible for transcription rate than transcript abun-
dance, but measurements of mRNA lifetime are possible19 and
allow one to convert between the two types of data. Finally, we stress
the importance of simultaneously fitting as many genes as possible.
Non-responding genes can be as informative as active ones regard-
ing cis-regulatory elements.

Methods
DNA sequence motifs. Motifs were chosen from the set of all oligomers up
to a given length (given the paucity of many octamers in our data set, we
stopped at 7 nt). In addition, dimers consisting of a pair of oligos with a
fixed spacing were used. Optionally, oligos were improved by iteratively
adding one degenerate IUPAC symbol at a time in all possible ways to the
top 100 motifs. A sequence similarity score was computed between all pairs
of statistically significant dimers that were then grouped using the ‘cast’
routine24. A weight matrix was computed by aligning the actual DNA
sequence elements that matched any member of the cluster (with no dou-
ble counting) and then counting the bases at each position, adding a
pseudocount of one. For the fit of the MCM1 weight matrix in Table 4, only
sequence matches with an information score greater than a given threshold
were used.

We count only those motifs that occur in the 600 bp upstream of the
translation start site for each ORF, because most of the known transcrip-
tion factor binding sites fall in that range13. We shorten the upstream
region to eliminate any overlap with a coding region on either strand. The
chromosome sequence and ORF coordinates for Saccharomyces cerevisiae
were obtained from the Saccharomyces Genome Database1.

Definition of the model. The model we use to fit the expression data
assumes additivity of the contributions from different regulatory factors
and is defined as:

(1)

Here Ag is the logarithm base two of the ratio of mRNA abundances between
two cell populations for gene g. The integer Nµg equals the number of occur-
rences of motif µ in the regulatory region, and M denotes the set of significant
motifs. For weight matrices, Nµg is the information score of the best match of
the matrix to the upstream region provided it exceeds a threshold based on
the score of the matrix against itself and its variance. The model parameters C
and {Fµ} are the same for each gene: C represents a baseline expression level

A  = C + Σ F Ng µ µg
µ∈Μ

Table 5 • Modulation of the MSE consensus motif
DNCRCAAAW

Motif ∆χ2 F(single) F(multi) Matches

GHCACAWA 0.1425 1.46 1.36 118

KWTTGTG 0.0694 0.88 0.92 130

ACAAAWTC 0.0559 1.35 1.20 49

Expression data used are from the 11.5-h time point in the sporulation experi-
ment of ref. 11. Outcome of fitting procedure selecting from the set of all
motifs of 8 nt or less with at most two IUPAC symbols. Only the 700 genes with
an upstream match to DNCRCAAAW are used. An error reduction of 26% is
achieved with 3 significant fitting parameters, and C = – 0.14.

Table 6 • Position-specific fit using N5CRCAAAWN5 as anchor

Base ∆χ2 P F(single) Matches
G4 0.0604 0.000001 0.85 187
A7 0.0321 0.000192 0.47 585
G7 0.0242 0.001269 –0.45 340
G2 0.0211 0.002889 0.51 182
G5 0.0192 0.004931 –0.48 188
A12 0.0181 0.006752 0.36 550
C14 0.0111 0.070088 0.41 140
C4 0.0103 0.094045 –0.36 177
T12 0.0099 0.106903 –0.28 375
T5 0.0077 0.251208 0.27 267
G15 0.0071 0.320387 0.29 179
C5 0.0063 0.441155 0.29 160

Positions are counted starting at the left-most position in the anchor, so that G7
denotes the presence of an G at the R position, etc. Data used are same as in
Table 5.
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when no motifs are present in the upstream sequence, whereas Fµ is the
increase/decrease in expression level caused by the presence of motif µ. The
sign of Fµ determines whether the putative protein factor that binds to
sequence element µ acts as an activator or as an inhibitor.

Fitting to expression data. It is convenient to transform both the logarithm
of the expression ratio, Ag, and the number of occurrences of motif µ in
gene g, Nµg, in Eq. (1) by subtracting their mean and applying a rescaling.
To this end define ag = δAg/(G‹δA2›)1/2, where G denotes the total number
of genes, ‹X› ≡ (1/G)ΣgXg defines an average of quantity X over all genes,
δAg = Ag – ‹A› is the deviation from the mean, and ‹δA2› = var(Ag) the vari-
ance of Ag. Similarly we define nµg= δNµg/(G ‹δNµ

2›)1/2, with δNµg = Nµg –
‹δNµ› for each motif µ. It is helpful to think of ag and of nµg as vectors a and
nµ in the G-dimensional space of all genes, and define the dot product a · b
= Σgagbg and norm | a | = (a · a)1/2. It follows from their definition that a
and nµ have unit length and are perpendicular to the vector 1 = (1, 1, …,1).
With this notation Eq. (1) takes the following form:

(2)

By varying fµ, we minimize the error between the model and the experi-
mental data,

(3)

It is straightforward to show that the optimal solution is obtained by solv-
ing fµ from the linear equation

(4)

Note that the dimensionality of this linear equation—equal to the number
of fitting parameters—is very different from that of the space in which the
vectors a and nµ reside. The corresponding solution to Eq. (1) can be recov-
ered as follows: Fµ = fµ(‹δA2›/‹δNµ

2›)1/2 and C = ‹A› – Σ µ∈ M fµ‹Nµ›.

Iterative procedure for finding significant motifs. When constructing a model
that achieves a significant reduction of χ2, the number of fitting parameters can
be kept to a minimum by adding motifs to the set M one at a time. When the
model is based on a single motif, we have fµ = a ⋅ nµ, and the error is given by:

(5)

One can thus rank all possible motifs by the reduction in the error, ∆χ2
µ = (a

• n )2, and select the largest one. We proceed inductively: after fitting a set of
parameters M compute the residual a´= a – Σµ fµnµ, rank all motifs by ∆´χ2

µ
= (a´ ⋅ nµ)2, and again select the µ giving the largest reduction in variance.
Note that Eq. (4) is equivalent to the statement that a´ is orthogonal to the
space spanned by the nµ in the set M.

Statistical significance measure. When the expression levels Ag are random
variables drawn from a normal distribution, the correlation between Ag and
Nµg, which can be written as a ⋅ nµ, is a random variable with zero mean and
standard deviation G–1/2. When the significance of a specific motif is consid-
ered, it is therefore convenient to define a unit-variance Z-score as: 

Zµ = (G)1/2 (a • nµ) (6)

Note that ∆χ2
µ = (Zµ)2/G. When the motif that gives the largest error reduc-

tion ∆χ2
µ is selected from a set of M possible motifs, the significance of ∆χ2

µ
is given by the extreme value distribution, describing the probability that

the largest (in absolute value) of M samples from a normal distribution,
prob(Z) = (2π)–1/2exp(–Z2/2), equals | Z |max = (G ∆χ2)1/2:

(7)

When using oligonucleotides up to length l, we have M = (4/3)(4l – 1). We
verified our error estimates (for example, the assumption that the residuals
are independent gaussians with a common variance) by randomizing the
association between expression and gene. When a site-specific fitting
scheme is used where µ = Bi stands for the presence of nucleotide B at posi-
tion i of a wild-card–containing consensus motif, M equals the total num-
ber of possible parameters Bi, so that each N in the consensus motif will
add four, an R or W will add two, and A, C, G or T will not add to M at all.
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