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Abstract
Background: A major challenge in computational genomics is the development of methodologies
that allow accurate genome-wide prediction of the regulatory targets of a transcription factor. We
present a method for target identification that combines experimental characterization of binding
requirements with computational genomic analysis.

Results: Our method identified potential target genes of the transcription factor Ndt80, a key
transcriptional regulator involved in yeast sporulation, using the combined information of binding
affinity, positional distribution, and conservation of the binding sites across multiple species. We
have also developed a mathematical approach to compute the false positive rate and the total
number of targets in the genome based on the multiple selection criteria.

Conclusion: We have shown that combining biochemical characterization and computational
genomic analysis leads to accurate identification of the genome-wide targets of a transcription
factor. The method can be extended to other transcription factors and can complement other
genomic approaches to transcriptional regulation.

Background
The availability of genome sequences for multiple species
and large-scale gene expression data has led to the devel-
opment of computational genomic approaches to tran-
scriptional regulation. A challenge in the field is the
accurate genome-wide identification of the regulatory tar-
gets of transcription factors (TF), which is a necessary step
towards reconstructing cellular transcriptional networks.
A number of functional genomic approaches have been
developed to tackle this problem. For example, ChIP-chip
(chromatin immunoprecipitation followed by hybridiza-
tion to DNA chip) technology has been applied on a large
scale to map the location of transcription factors in the

yeast genome [1,2]. Gene expression profiling of cells in
which a transcription factor is either overexpressed or
deleted has also been used to identify targets [3-8]. While
these are powerful approaches to systematically identify-
ing target genes, they also have limitations. For example,
ChIP-chip experiments performed under a specific condi-
tion may not identify the correct targets of a factor if that
factor is not activated, or may only identify a subset of the
target genes if the factor works with other TFs in a combi-
natorial fashion, and searching for all conditions under
which a factor may be functional is a daunting task. In
addition, physical binding to a promoter as detected by a
ChIP-chip experiment may not necessarily imply regula-
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tion. Similarly, the response of the genome to transcrip-
tion factor perturbation may be condition dependent and
may involve a transcriptional cascade with many indirect
targets. Together with noise in the experimental measure-
ments, these limitations also make it difficult to estimate
the false positive and false negative rates.

Predicting the binding site and target genes of a TF based
on sequence analysis is an approach complementary to
functional analysis. The most straightforward approach,
predicting the targets of a TF based on consensus binding
site lacks the desired sensitivity and specificity, often iden-
tifying many more targets than are believed to be biologi-
cally relevant. Using a position specific weight matrix,
typically derived from the probability of occurrence of 4
nucleotides at each single base position based on known
examples of binding sites is better than using a consensus
sequence as it allows a quantitative measure of the
strength of the binding site. However, this procedure still
produces a large number of false positives under condi-
tions that achieve reasonable sensitivity.

We present a method for target prediction that does not
depend on gene expression or other functional genomics
data. The method selects target genes by combining the
follow criteria: 1) quantitative binding affinity of the
potential binding site based on biochemical characteriza-
tion of the factor; 2) position of the site relative to the
gene start; 3) conservation of the site in sequence and
position across multiple closely related species. These cri-
teria have been used individually before to predict bind-
ing sites or target genes. For example, binding affinity data
from in vitro experiments has been used to scan potential
target genes in a genome [9,10] and conservation across
species has been explored to identify regulatory elements
[11-16]. Location preference of true binding sites has also
been observed before [12,17-19]. Here we show that these
criteria can be combined to generate target predictions
with high sensitivity and specificity. In addition, a mathe-
matical analysis of the multiple selection criteria allows us
to accurately estimate the false positive rate and the total
number of targets in the genome. Such a calculation is not
possible if targets are selected by a single criterion.

Ndt80 binds to MSE Variants Differently in vitro Figure 1
Ndt80 binds to MSE Variants Differently in vitro. Purified MBP-ndt80, 51–350 was incubated with 35 base-pair radio-labeled oli-
gos containing a centralized MSE (underlined capital letters) (a) or single base MSE variants and analyzed by EMSA (b). Single 
base-pair variants three nucleotides 5' and two nucleotides 3' of the central MSE sequence were also tested. All EMSA bands 
were quantitated relative to the wild-type MSE where the percent of labeled wild-type MSE shifted by Ndt80p was designated 
1. The same data was shown both in the graph and in the table.
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We start by characterizing the binding site sequence
requirements for the TF using biochemical and genetic
experiments, and use the data to quantitatively measure
the binding affinity of potential binding sites. We then

analyze the positional distribution of the true binding
sites computationally; using a carefully selected true target
set, and test the relevance of location directly by in vivo
experiments. Finally, we filter for genes with binding sites

MSE sequence variations in vivo affect RNA levels through the SPO77 promoterFigure 2
MSE sequence variations in vivo affect RNA levels through the SPO77 promoter. Shown at the bottom is a schematic of the het-
erologous in vivo chromosome constructs at the SPO77 locus. At one SPO77 locus, we replaced SPO77 with GFP, and the wild 
type MSE with mse*, which differs from the wild type by a single base mutation, written in capital letters (Except for (a), where 
the mse* is the same as the wild type.). The second SPO77 locus is unaltered. The resulting diploid SK1 strains were sporulated 
for 24 hours in liquid. Whole genomic RNA was extracted from these cells at 0,2,4,6,8,10, and 12 hours of sporulation, run on 
a denaturing polyacrylamide gel, transferred to a nitrocellulose membrane and probed sequentially with 32P labeled probes to 
SPO77, GFP and PFY1. Included in the parenthesis is the in vitro binding of Ndt80 to each MSE variant relative to the wild type.
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conserved across multiple species. Combining conserva-
tion with affinity and position, we predict a set of target
genes and calculate false positive and false negative rates.
We demonstrate this approach by predicting the regula-
tory targets of Ndt80, a key transcription factor that directs
expression of middle sporulation genes in yeast. We
choose Ndt80 as it exemplified the difficulty of predicting
target genes with high specificity. It is known that most
genes in the genome with the consensus Ndt80 binding
site are not regulated by Ndt80 [20].

Sporulation is initiated in diploid a/α cells in response to
starvation and is characterized by the sequential expres-
sion of early, middle, mid-late and late genes [20,21].
Genome-wide expression profiling [20,22] has revealed
that ~500 genes are induced during sporulation, of which
about one third were classified as meiotic middle genes
based on their expression profiles [20]. Most meiotic mid-
dle genes, necessary for exit from meiotic prophase and
for meiotic nuclear division and spore morphogenesis
[20,23] are regulated by Ndt80, which binds to the mid-
dle sporulation element (MSE), defined as gNCRCAAAW
[24,25]. The yeast genome contains the Ndt80 core con-
sensus binding site, CRCAAA, upstream of about 2000
genes. Using our method, we identified 115 genes as puta-
tive Ndt80 targets, among these ~40 are predicted to be
false positives. We estimated that the total number of
Ndt80 targets in the genome is ~170.

Results
Ndt80 binding sequence requirements in vitro 
We determined the binding preferences of the Ndt80
DNA binding domain (aa 51–350) fused N-terminally to
Maltose binding protein (MBP-Ndt80 51–350) for the
SPO77 MSE using EMSA analysis [26-28]. The SPO77 MSE
(located at -152 from the start of translation) was chosen
because it has good homology to the Ndt80 consensus
[22,24,25] and because a single copy was sufficient to
direct transcription [20]. We systematically examined the
effects of every alteration at each position of a 14 bp
region, which consisted of the 9 bp core sequence
GTCACAAAA together with three upstream and two
downstream base-pairs, presented as the central region of
a 35 bp oligonucleotide (Figure 1a). The quantitative data
from the mutational analysis is shown in Figure 1b. This
study complements two previous binding preference stud-
ies, performed while this work was in progress [26,29].

We confirmed that most binding determinants are in the
9 bp core MSE. Of the five positions systematically
mutated outside the core, only changes to the second
position downstream of the MSE (+11) had any effect on
binding and these were minor (Figure 1b). Within the
core MSE, C5 is essential, as a change to any other nucle-
otide essentially abolished binding. The A4 and A6 posi-

tions are next most important, exhibiting significant
decreases in binding with any change and severe restric-
tion of binding with two of the three changes. The C3, A7
and A8 positions are also significant. For those positions
where similar changes have been examined, the data of
this study and that of Pierce et al are in excellent agree-
ment [29]. These two studies generally agree with the
more restricted data set of Lamoureaux et al [26], except
for their conclusion that at C5, only a change to G severely
restricts activity.

Ndt80 binding sequence requirements in vivo 
A subset of the mutations were analyzed in vivo during
sporulation, using a strain having one authentic SPO77
locus, so that sporulation was unimpaired, and a second
SPO77 locus encoding GFP and driven either by the wide
type promoter or one having an altered MSE (Figure 2).
Quantitative analysis of the in vivo expression is included
in the supplementary material (see Additional files 1 and
2). By comparing the RNA levels from the GFP construct
with that from SPO77 expressed in the same cells and nor-
malizing both to expression of an internal control, we
were able to make an accurate determination of the effect
of the MSE mutations on expression. When driven by the
wild type MSE, GFP was induced at levels similar to
SPO77 RNA with similar timing (Figures 2a), indicating
that this system could be used to test expression of GFP
driven by mutant MSEs.

With the exception of position 2, where nucleotide iden-
tity did not affect binding (Figure 1), we tested the effects
of at least one nucleotide change at each MSE position on
expression during sporulation (Figures 2). Overall, we
find excellent agreement between our in vivo expression
measurements and the in vitro binding data (Compare
Figures 1 and 2). Importantly, these data validate our find-
ing in vitro that changes to the C5 position other than G
are very deleterious, as a C5A change has essentially no
activity in vivo (Figures 2g). Additionally, by testing all
changes at position C3 (Figures 2c–e), we could show that
even small changes in in vitro binding are significant for
expression in vivo.

The location of the MSE is important for sporulation 
specific gene induction in vivo 
Although total genomic MSEs are found in widely varying
positions [22,24,25], our computational analysis of posi-
tive targets showed that functional MSEs are distributed in
a preferred window between -75 to -300 bps upstream
(see next section) of the translation start point. We there-
fore tested positional dependence of MSE activity by
changing the endogenous MSE at -152 to a nonfunctional
sequence (gtcaAaaaa) and positioning a consensus MSE at
either-450 or -50. These MSEs mediate very little, if any
GFP expression. Lack of gene expression is not due to inhi-
Page 4 of 12
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:275 http://www.biomedcentral.com/1471-2105/6/275
bition of RNA synthesis, as normal GFP RNA synthesis is
observed when the positionally altered variants also have
the normal MSE at position -152 (Additional file 3). We
conclude that MSEs position is important for function.

Identification of the test set of middle genes utilized in 
computational analysis
To get a highly specific set of target genes as our test set, we
define middle genes as those exhibiting less than a 1.2
fold change at 2 hours and greater than 3 fold change at 5
hours following the initiation of sporulation. Using these
criteria, we identified 68 middle sporulation ORFs from
the microarray data published by Chu et al.[20]. Of these
68 ORFs, 54 have multi-species sequence data (see
method) and the Ndt80 core consensus binding site
CRCAAA. These genes were used as our test set. 36 genes
in this test set overlap with 62 strongly induced middle
sporulation genes independently identified by Primig et
al. via clustering analysis [21].

The location of the MSE is specifically distributed in 
middle sporulation genes
We used a statistical analysis that compares the location of
MSE relative to the translation start site in the test set with
that in the whole genome promoters to determine
whether there is a positional preference for MSE in the
true target sets. We find that MSEs are highly localized
between positions -75 to -300 from the translation start

site in the test set (Fig 3a). In striking contrast, the MSE
sequences in the whole genome promoters do not have a
preferential location (Fig 3a, inset), suggesting that MSE
location might be a determinant of middle gene activity.
To pursue this issue further, we asked whether positional
bias of the core MSE sequence, CRCAAA, of the test set
promoters is conserved between S. cerevisiae and the
orthologous promoters in S. bayanus, S. mikatae, and S.
paradoxus [11,30]. We found that the positional distribu-
tion of the CRCAAA motif in all the other three species
have similar preference (Fig. 3a), whereas no preference is
observed for MSE sequences in the whole genome pro-
moters.

Distribution of the binding affinity of potential Ndt80 
binding sites in the genome
There are over two thousand genes in the S. cerevisiae
genome whose promoter (800 base pairs upstream) con-
tains the Ndt80 core consensus binding motif CRCAAA.
Given the modest number of middle genes, it is likely that
most of these matches are false positives. It might be pos-
sible to discriminate against the false positives using
quantitative biochemical data from the in vitro binding
assay, since bases matching the degenerate symbols in the
core motif and/or from the flanking sequences can con-
tribute to the binding affinity (Figure 1). We therefore
extracted the N5-CRCAAA-N3 motifs in all S. cerevisiae
promoter sequences and scored each motif using the in

(a) Functional MSEs are located in preferred positional windowsFigure 3
(a) Functional MSEs are located in preferred positional windows. Genes in the test set were analyzed for the location of the 
core MSE sequence, CRCAAA, in four yeast species. The inset shows the distribution of the locations of the MSE in the whole 
genome promoters. All the distributions were normalized by the number of available promoter sequences at the given loca-
tion. (b) The distributions of binding scores for the MSE sites in the test gene set (red dashed curve) and in the whole genome 
(solid black curve).
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vitro binding data, which we converted to binding affinity
relative to the wild type SPO77 motif (see Materials and
Methods). The resulting relative binding affinity reflects
the contributions from the degenerate core position (R)
and the flanking sequences. We observe that the distribu-
tion of relative binding affinities for matches in the test
middle sporulation gene set is distinct from the set of all

the matches in the genome (presumably mostly false pos-
itives) (Figure 3b). Whereas the mean of the genome-wide
distribution is -0.58, with a standard deviation of 1.05,
that of the reference set shifted by about one standard
deviation towards a higher score, showing a mean of ms =
0.57 and a standard deviation of σs = 0.96. These data
show that the false positive matches can be discriminated

Schematic diagram of the effect of selection by the two different filters on two gene sets- the candidate Ndt80 targets (2259 ORFs) and the test set (54 ORFs)Figure 4
Schematic diagram of the effect of selection by the two different filters on two gene sets- the candidate Ndt80 targets (2259 
ORFs) and the test set (54 ORFs). One filter is the binding score and location, and the other filter is conservation across 4 spe-
cies. The number of ORFs in each set passing the first, the second, and both filters are indicated in the ovals. These numbers 
were used to estimate the false positive and false negative rates of the target prediction based on a simple model (see method 
for details).
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to certain degree based on the quantitative binding affin-
ity. For example, using ms - σs as a cutoff score and assum-
ing Gaussian distribution, we would eliminate about 50%
false positives, while keeping more than 80% of true pos-
itives.

Predicting the direct targets of Ndt80 in the genome
We have shown that the potential Ndt80 binding sites in
the promoters of middle genes differ from their non-mid-
dle gene counterparts by having on average a higher bind-
ing affinity and positional preference. With the
availability of complete sequences of several yeast species,

it is possible to use evolutionary conservation as an addi-
tional filter to select true binding sites, since functional
sites are more conserved due to selection pressure. We
therefore searched for the direct targets of Ndt80 using the
following criteria: 1) the selected ORF should have at least
one core motif N5-CRCAAA-N3 with binding affinity
score higher than a specified cutoff (ms - σs ); 2) the motif
is located between -80 to -400 from the translation start
site; and 3) the core motif is conserved in a number of
yeast species (see methods for details). To assess the pre-
dictive value of this selection scheme, we compared its
performance on the middle gene test set with that on the

Clustering of the sporulation temporal expression profiles of genes in the test set and genes predicted by the computational methodFigure 5
Clustering of the sporulation temporal expression profiles of genes in the test set and genes predicted by the computational 
method. The box on the left shows the profiles of genes in the test set (group 1 and 2). The 115 ORFs predicted by the com-
putational method were shown in the right box (group 2 to 5). Group 2 is the overlap between the test set and the predicted 
set. The 91 ORFs in the predicted set only give rise to three distinct clusters (groups 3 – 5).
Page 7 of 12
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:275 http://www.biomedcentral.com/1471-2105/6/275
2259 ORFs whose promoter has at least one core MSE
motif. When we use conditions 1, 2 and demand conser-
vation of the core motifs in all 4 species, we identify 115
ORFs in S. cerevisiae as potential Ndt80 regulatory targets
(Figure 4). These combined criteria reduced the total
number of predictions by 20 fold, and thus greatly
reduced the number of false positives. On the other hand,
the predicted ORFs still include 44% of the ORFs in the
test set having the MSE motif (24 out of 54). This demon-
strates that our procedure can successfully discriminate
between bonafide middle genes and false positives. Fur-
thermore, the computational analysis also predicted 91
new genes as potential Ndt80 targets.

Calculating the false positive and the false negative rate
To gauge the accuracy of the prediction, it is important to
ask how many of the predicted genes are false positives
and how many true targets are missed. In a functional
genomics approach, the false positive rate is typically esti-
mated by experimental verification of the predicted tar-
gets. Here we develop a mathematical approach that
allows us to estimate both false positive and false negative
rate, and consequently the total number of targets in the
genome. Crucial to this approach are: 1) a set of true tar-
gets known with high confidence; and 2) multiple inde-
pendent filters that can be used to select potential targets.
The idea is illustrated in Figure 4 where we start with a
high confidence positive set of 54 genes and 2259 poten-
tial targets with the consensus MSE site in their promoters.
We believe that the 54 genes are the authentic targets of
Ndt80 as they passed the stringent criterion of gene
expression (exhibiting less than 1.2 fold change at 2 hours
and greater than 3 fold change at 5 hours following the
initiation of sporulation) and also posses a consensus
MSE in their promoters. We now apply two different fil-
ters individually and jointly. One filter selects genes
whose binding sites score is larger than (ms - σs ) and the
motif is located between -80 to -400 from the translation
start site (condition 1 and 2 of the selection in the previ-
ous section). The other filter selects genes whose promoter
have the MSE site conserved across 4 species (condition
3). The fractions of true positives passing the two filters
can be estimated from the test set. There are three
unknowns: the fractions of false positives passing the two
filters, and the total number of true positives. Given the
number of genes (from the set of 2259) passing the first,
the second, and the joint filters, we can write down three
equations, and solve for the three unknowns (see meth-
ods). From the obtained parameters, we estimate that out
of 2259 ORFs with CRCAAA motif in their promoters, 169
± 20 are the regulatory targets of Ndt80. Among the 115
genes we identified as putative Ndt80 targets, 43 ± 5 are
false positives. We also found that the probability for a
functional MSE to be conserved across 4 species is 0.5
while the probability of chance conservation for a false

positive site is 0.1. This gives a quantitative measure of the
strength of selection on a functional regulatory site.

Validating the predictions using gene expression profiles
To validate these predictions, we performed a clustering
analysis of the mRNA expression profiles during sporula-
tion using the expression of the 115 genes predicted by
our computational method and the 54 middle genes in
the test set. We separately clustered the expression profiles
of the following three sets of genes: 30 genes in the test set
but missed by our computational analysis; 24 genes given
by the overlap between the test set and the predicted set;
and 91 genes in the predicted set but not in the test set.
The first two sets of genes showed a clear middle gene
expression profile – repressed till about 2 hours and then
sharply turned on at 5 hours (group 1 and 2 in Figure 5).
The set of 91 genes gives rise to three distinct clusters
(group 3 – 5 in Figure 5). The first cluster (41 genes, group
3) resembles middle gene expression profile. The second
cluster (group 4) contains 9 genes turned on at 0.5 hours
and then at much higher level at 5 hours. The third cluster
(group 5) contains 41 genes which are not up-regulated
during sporulation. We believe that the 74 genes in groups
2–4 predicted by the computational method are likely to
be the true targets of Ndt80, while the 41 genes in group
5 are likely false positives. This estimation of false posi-
tives is consistent with the number we obtained from the
simple model (43 ± 5) presented above.

We also compared the targets predicted by our computa-
tional method to those identified by Ndt80 over-expres-
sion during vegetative growth [20]. We selected 236 genes
whose log transformed expression ratio is 2 standard devi-
ation above the mean as targets predicted by over-expres-
sion data. We found that 49 out of 54 genes in the test set,
and 20 out of 50 in group 3 and 4 were predicted by
Ndt80 over-expression. These overlaps were highly signif-
icant (only expect 2 by random for each case). For group
5 genes which we believe are false positives, the overlap is
insignificant, only 2 out of 41 were predicted by the over-
expression data.

Our predictions are also consistent with the microarray
data for the Ndt80 deletion strain during sporulation[20].
We compared the fold changes for the mRNA induction of
the Ndt80 deletion strain to the wild type strain. The fold
change ratio is defined as

, where we use the

mRNA expression at 6 hours ( ) and at 2 hours

( ) for the deletion strain and the mRNA expres-

sion at 7 hours ( ) and 2 hours ( ) for the wild

type strain. For Ndt80 targets, we expect that the fold
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induction during sporulation will be much less in the
deletion strain compared to the wild type, thus r will be
much smaller than 1, while for non-targets, we expect r to
be around 1. The genome-wide average of the fold change
ratio r is close to one (1.07 ± 0.57) and only 12% genes
have the ratio less than 0.5. In group1, the fold change
ratio of 29 genes out of 30 genes is less than 0.5 in the
deletion strain. The fold change ratio of all genes in group
2 and 41 out of 50 genes in group 3 and 4 are less than 0.5,
while only 8 out of 41 genes in group 5 have the ratio less
than 0.5. The result for group 5 is consistent with the pre-
diction that these genes are false positives based on the
clustering analysis.

Examination of the promoter sequences of these genes
reveals that different groups have the binding sites for
other transcription factors in addition to the Ndt80 bind-
ing sites. For example, most genes in groups 2 and 3 (mid-
dle genes) have a binding site resembling that of both
Ndt80 and Sum1 [29,31]. The binding of Sum1 may be
important for repressing these genes early in sporulation.
Two genes in group 4 (which are turned on early) ADY3
and MPC54 have the conserved URS1 site DSGGCGGC in
their promoter sequences close to the conserved Ndt80
binding site. It is known that Ume6/Ime1 complex bind
to URS1 and turn on their target genes early in sporula-
tion[20,32]. Another gene with similar expression profile
and conserved URS1 and Ndt80 sites is YNL196C. This
gene is not in the cluster as the position of the Ndt80 site
is -78, which barely missed our positional cutoff of -80.
Thus it seemed that Ndt80 works together with other fac-
tors to fine tune the temporal expression of different gene
sets in a combinatorial fashion.

Comparison with ChIP-chip data
ChIP-chip technology has been widely used to identify the
genomic targets of transcription factors. Recently, Harbi-
son et al. published a comprehensive dataset for yeast
containing 203 factors under a variety of conditions[2].
This dataset includes Ndt80 done under the YPD condi-
tion. We found that with the standard P value cut off (P <
0.001), 18 genes were predicted, and none is in the test
set. With the less stringent cut off P < 0.01, 86 genes were
predicted, and again none is in the test set. Only a few
genes out of the 86 predicted by the ChIP data showed a
middle gene expression profile (see additional file 1 and
4). Thus it seems that the ChIP-chip data for Ndt80 under
YPD condition is dominated by noise. This is not surpris-
ing as the experiment was done under normal growth
condition, and Ndt80 is activated only during sporula-
tion. For Ndt80, the signal would be improved greatly by
doing ChIP-chip experiment under sporulation condi-
tion. For an uncharacterized factor, it is quite challenging
to search for conditions under which the factor is active.

Although ChIP-chip is a powerful and systematic
approach to dissecting transcription networks of a cell, the
Ndt80 example highlighted the need for complementary
approaches such as the one we described here.

Discussion
The difficulty in successfully predicting regulatory ele-
ments and targets of transcription factors is exemplified
by studies on meiotic middle genes activated via Ndt80
binding to the MSE. Although many middle genes have
been identified from gene expression data and statistically
significant over-representation of the MSE element in the
promoters of these genes has been observed, predicting
the target genes of Ndt80 with high sensitivity and specif-
icity based on sequence information has been a big chal-
lenge. In fact, most consensus MSEs in the genome
(>90%) are located upstream of genes not expressed dur-
ing middle sporulation and not regulated by Ndt80. This
problem is not Ndt80 specific – the appearance of a con-
sensus-binding site upstream of a gene is neither necessary
nor sufficient to indicate that the gene is regulated by a
transcription factor known to bind to that site. Here we
show that combining careful biochemical characteriza-
tion of the binding site with positional information and
evolutionary conservation in multiple species, we can sig-
nificantly improve our ability to predict TF target genes.
Using the combined information, we identified 115 puta-
tive targets of Ndt80 from about 2200 candidate genes
whose promoter contains the consensus MSE. The predic-
tions are quite specific (~40 false positives) and they
include 45% of those from the positive test set. By com-
bining our predictions based on sequence analysis with
those from the test set selected based on both motif and
gene expression data, we obtained 145 genes, with ~100
estimated to be true positives. We believe this set captured
the majority of the Ndt80 targets (with the consensus MSE
motif) in the genome, which is estimated to be ~170.
These genes are good candidates for future experimental
validation, and for analyzing combinatorial regulation by
Ndt80 and other transcription factors.

The strength of this method is the application of many
independent filters, each of which preferentially elimi-
nated non-target genes. Based on quantitative analysis of
relative binding affinity corroborated by in vivo experi-
ments, we found that true positive sites have on average
stronger binding than false positive sites (although they
share the same consensus) due to the contributions from
sequences flanking the consensus and from the degener-
ate positions. This allows us to eliminate about 50% false
positives while keeping 80% of true positives. We have
demonstrated by bioinformatic analysis as well as by
experiments that the location of the MSE is important for
middle gene regulation. This location preference is used to
further eliminate false positives. When restricted to genes
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with MSE elements positioned from -80 to -400, we
reduced the total number of predictions by a factor of 2
while keeping all the known targets in the test set. The
conservation of the MSE across multiple yeast species is
another powerful filter. By demanding conservation
across 4 different yeast species, we reduced the total
number of predictions by a factor of 10, while keeping
half of the targets in the test set. The cross species compar-
ison also provides insight into which MSE sequence is
likely to be used when multiple MSE sequences are
located in the same promoter. We have used conservation
in a primitive way, by demanding exact conservation of
the consensus sequence across all species. Targets were
missed because the orthologous promoters do not exist in
all species, the promoter sequences are seriously mis-
aligned, or the binding site is not conserved at the consen-
sus sequence level. We believe that the sensitivity of the
search can be improved by using position specific weight
matrix to quantitatively account for the variability of the
sequence across species, and by using the phylogenetic
tree to account for the evolutionary relationships.

A difficult task for genome-wide prediction is to estimate
the false positive rate and the total number of targets, or
equivalently, how many predicted targets are false posi-
tives and how many are missed. This is important for
understanding the scope of the transcriptional response
and for building confidence in the inferred transcriptional
regulatory networks. For a factor with sufficient number
of known targets, false negative rate can be estimated by
the fraction of known targets missed. Estimating false pos-
itives is more difficult. Previously, false positive rates
could be estimated only by experimentally verifying the
predicted targets. Here we proposed a simple computa-
tional method to estimate false positive rate and the error
of the estimation. For this method to work, one needs a
set of high confidence targets and at least two independ-
ent filters to select potential targets. We presented the
results where one filter is taken as positional distribution
plus binding site score and another filter as conservation
across 4 species. We have used a number of other combi-
nations and the results are all consistent. Our estimation
is also consistent with the results from the clustering anal-
ysis.

The approach we present is a general one that allows the
identification of true targets of a transcription factor.
There are a large number of transcription factors in the
yeast genome for which a sufficient number of true targets
are known and PSWMs are available. Our approach can be
used to make better predictions of the targets for these fac-
tors and to estimate false positive and false negative rates.
For uncharacterized transcription factors, our study sug-
gests that in vitro characterization of the binding specifi-
city (e.g., systematic data from SELEX experiments)

followed by a genomic search using positional constraint
and evolutionary conservation can be an efficient way for
identifying their regulatory targets. This approach will
complement other genomic approaches that determine
the regulatory targets of a transcription factor.

Methods
Molecular biology and strains
MBP-Ndt80 fusion constructs and their purification,
EMSA in vitro binding analysis, Northern blot analysis and
all in vivo gene and element replacements were done as a
variation of previously described techniques and are fur-
ther described in supplementary materials (Additional file
1). β-galactosidase experiments were done in W303 MATa
ade2-1 trp1-1 can1-100 leu2-3,12 ura3-52 his3-11,15; all
other experiments were done in yeast strain background
SK1 MATa, MATα, or a/α ho::his G ura3 lys2 leu2::his G trp-
∆FA his3-11,15. Strain yEJ129 is MATa Pspo77 mse::URA3
where the MSE sequence at the SPO77 promoter is
replaced with URA3; strain yEJ152 is yEJ129 with GFP-
TRP1 inserted into the SPO77 locus.

Sequence data
We download the sequences for S. cerevisiae, S. paradoxus,
S. mikatae, and S. bayanus published by Kellis et al [11].
The sequences files contain 5306 S. cerevisiae ORFs and
their promoters and the corresponding orthologous
sequences in other species.

Binding score

To calculate the binding score for a potential site, we
define position specific scoring matrix

, where ∆G measures the standard

free energy change of protein-DNA complex formation,

WT stands for the wild type DNA sequence, and 

stands for a mutant with a single base mutation t at posi-
tion i. The binding score for an arbitrary motif is defined
as the summation of the position specific scores

, where ti is the nucleotide type of the motif at

position i. The standard free energy change is calculated
from the fraction of DNA bound based on the law of mass
action (see the supplementary materials in Additional file
1 for details).

Cross species analysis
We search for the core motif CRCAAA in the promoter
regions of the four yeast species (S. cerevisiae, S. bayanus, S.
paradoxus, and S. mikatae) in a positional window x ± 20
relative to their respective translation start sites and count
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the number of species in which the core motif was found
in the window. We maximize this number with respect to
x and define it as the number of species in which the motif
is conserved. This definition allows us to identify con-
served core motifs even if the promoter sequences are
slightly misaligned.

Estimation of the total number of targets and the false 
positive rate
To estimate the false positive rate of our prediction and
the total number of targets in the genome, we screened the
2259 ORFs whose promoter contains the consensus
CRCAAA motif by two different filters. The first filter
selects ORFs whose binding affinity score is larger than -
0.4 and the location is between -80 and -400 bps
upstream. The second filter selects ORFs in which the con-
sensus sequence is conserved across all 4 species. We
applied the two filters separately and jointly to the set of
2259 ORFs and recorded the number of ORFs passing the
first, second, and both filters as 573, 294, and 115 respec-
tively. Using x to denote the number of true targets among
the 2259 ORFs, we derived the following equations:

α1x + β1(2259 - x) = 573

α2x + β2(2259 - x) = 294

α1α2x + β1β2(2259 - x) = 115

where α1, α2 are the fractions of the true targets passing the
first filter and the second filter, and β1, β2 are the fractions
of the false positives passing the first and the second filter.
We made the assumption that the two filters are inde-
pendent of each other, so that the fraction of true and false
positives passing both filters can be written as a product of
the fractions passing each individual filter. We found that
this assumption is quite good for the true positives. For
false positives, we cannot directly assess how good the
assumption is. We argue that since the conservation of a
false positive site is by chance, it is unlikely to correlate
with the binding site affinity score and the location. To
estimate α's, we applied the some filters to 54 ORFs from
the test set of true positives and recorded the number of
ORFs passing the first, the second, and both filters as 46,
27, and 24, from which we obtained α1 = 46/54 = 0.85, α2
= 27/54 = 0.50. The independence assumption predicts
that the fraction passing both filters is α1α2 = 0.43, which
agrees well with the observed value 24/54 = 0.44.

Given α's, we solved the above equations to obtain β1 =
0.21, β2 = 0.10, and x = 169, which gives the total number
of true targets in the set of 2259 ORFs. From these num-
bers we obtained the number of false positive predictions
in our final 115 ORF list is 43. As a by-product, the prob-
ability by chance a false positive CRCAAA motif is con-

served across 4 species is estimated to be 0.10. We used
bootstrap to estimate the errors. Using the above parame-
ters, we sample the number of ORFs passing the first, sec-
ond, and both filters using binomial distribution, and re-
calculated the parameters to get the standard deviations.
We found that δx = 20, δβ1 = 0.02, δβ2 = 0.01, δα1 = 0.03,
δα2 = 0.04, and the standard deviation for the false posi-
tives is 5.
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