
Regulatory Element Detection using a Probabilistic
Segmentation Model

Harmen J. Bussemaker1, Hao Li2,3, and Eric D. Siggia2,4

1Swammerdam Institute for Life Sciences and Amsterdam Center for Computational Science, University of
Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands; 2Center for Studies in Physics and Biology,
The Rockefeller University, Box 25, 1230 York Avenue, New York, N.Y. 10021; 3Current Address: Departments

of Physiology and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143;
4Department of Physics, Cornell University, Ithaca, N.Y. 14853-2501

bussemaker@bio.uva.nl, haoli@phy.ucsf.edu, siggia@eds1.rockefeller.edu

Abstract

The availability of genome-wide mRNA expression
data for organisms whose genome is fully sequenced
provides a unique data set from which to decipher
how transcription is regulated by the upstream con-
trol region of a gene. A new algorithm is presented
which decomposes DNA sequence into the most prob-
able “dictionary” of motifs or words. Identification of
words is based on a probabilistic segmentation model in
which the significance of longer words is deduced from
the frequency of shorter words of various length. This
eliminates the need for a separate set of reference data
to define probabilities, and genome-wide applications
are therefore possible. For the 6000 upstream regu-
latory regions in the yeast genome, the 500 strongest
motifs from a dictionary of size 1200 match at a signif-
icance level of 15 standard deviations to a database of
cis-regulatory elements. Analysis of sets of genes such
as those up-regulated during sporulation reveals many
new putative regulatory sites in addition to identifying
previously known sites.

Introduction
The detection of multiple regulatory elements from a
large set of upstream regulatory regions is a challenging
problem in the field of computational genomics. One
approach has been to delineate, as sharply as possible,
a group of 10-100 co-regulated genes (Eisen et al. 1998;
van Helden, André, & Collado-Vides 1998) and then
find a pattern common to most of the upstream regions.
The analysis tools employed range from general multi-
alignment algorithms yielding a weight matrix (Stormo
& Hartzell 1989; Lawrence et al. 1993; Bailey & Elkan
1994) to comparison of the frequency counts of sub-
strings with some reference set (van Helden, André, &
Collado-Vides 1998). These approaches typically re-
veal a small number of responsive elements per group
of genes in the specific experiment analyzed.

Here we present a new algorithm suitable for dis-
covering multiple motifs from a large collection of se-
quences, e.g., all the upstream regions of the yeast
genome, or all the genes up-regulated during sporula-
tion. The approach we took formalizes how one would
Copyright c© 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

proceed to decipher a “text” consisting of a long string
of letters written in an unknown language that does not
delineate words. The algorithm is based on a statisti-
cal mechanics model in which the sequence of symbols
is segmented probabilistically into words and a “dictio-
nary” of words is built concurrently. Our algorithm can
simultaneously find hundreds of different motifs, each
of them only shared by a small subset of the sequences,
e.g., 10 to 100 copies out of 6000 upstream regions in
the yeast genome. The algorithm does not need an ex-
ternal reference data set to calibrate probabilities, and
finds the optimal lengths of motifs automatically.

We start by formulating the model, and explain
in some detail how the probabilities associated with
words in the dictionary can be fixed using a maximum-
likelihood principle. Next we show how a consistent
dictionary for a sequence set can be constructed iter-
atively, starting from the alphabet only. We illustrate
the approach by segmenting a string of letters derived
from an English novel, and end by discussing the dictio-
nary obtained for the combined set of upstream regions
in the yeast genome.

A Dictionary-Based Sequence Model
At the heart of our approach to analyzing an unknown
DNA sequence is the assumption that the sequence data
can be viewed as the output of a statistical model gen-
erating sequences according to well-defined rules. We
use a model in which the sequence is a random con-
catenation of building blocks that are added with a
certain probability at each step, independent of what
was added earlier; these building blocks however are
not single bases but oligonucleotides of various length.
We will refer to the building blocks as words, and each
word α has a probability pα associated with it. The
probabilities are normalized:

∑
α pα = 1.

The set of all words and their associated probabilities
is referred to as the dictionary. Not all words of a given
length have to be present in the dictionary. This holds
in particular for the longer words, and a great reduction
in number of parameters with respect to Markov mod-
els is the result. In general there will be correlations
between neighboring bases in the sequences output by
the model: the model has no memory at the level of

words, but this is not true at the level of bases. Note
the distinction between the probability of a dictionary
word and the frequency of a string in the data. The lat-
ter “knows” nothing about the dictionary nor respects
the word boundaries which vary from realization to re-
alization of the data. The frequency of a string which
is also a dictionary word is at least as great as the word
probability, but could be substantially larger due to the
chance juxtaposition of fragments. Dictionary words
for which the two are nearly equal are of high statis-
tical significance, and these are the ones we consider
as biologically relevant. There is no sharp distinction
between signal and background, although short words
tend to have lower significance.

Maximum-Likelihood Procedure
Suppose we are handed a sequence S that was generated
using a dictionary for which we know the words but
not pα. It turns out that if S is long enough we can
recover these probabilities by maximizing the likelihood
of observing S with respect to pα under the constraint∑
α pα = 1. More explicitly we have

(likelihood of observing S) =
Z(S)∑
S′ Z(S′)

. (1)

The partition function Z(S) is defined as

Z(S) =
∑
P

∏
α

(pα)Nα(P), (2)

where a sum is performed over all possible partitionings
or segmentations P of the sequence S into dictionary
words, i.e., all possible ways the sequence can be gener-
ated from concatenations of words from the dictionary,
and Nα(P) denotes the number of words of type α used
in partitioning P .

The denominator
∑
S′ Z(S′), in which the sum is

over all sequences whose length equals that of S, acts
as a normalization constant, but it is essentially equal
to unity for large enough sequences, so that it can be
omitted from the analysis. The object to be maximized
is therefore the partition function Z(S), which we will
simply refer to as Z in the remainder of this paper.

To see why the denominator is very close to unity,
observe that we can estimate it by∑

S′

Z(S′) '

(∑
α

pα

)Nav

= 1. (3)

In this expression Nav equals the average number of
words in the partitioning of S′ and the second equality
follows from the normalization

∑
α pα = 1. A more rig-

orous analysis using complex contour integration shows
that the strict length constraint causes corrections to
this result that decreases exponentially with L and thus
can be safely ignored.

Fixed-Point Equation
Just like in statistical physics, the partition function
Z(S) can be used as a generating function for averages

and correlation functions by taking derivatives. For in-
stance, the average number of words of each type used
to partition the sequence can be calculated by taking
the derivative with respect to pα:

〈Nα〉 = pα(∂/∂pα) logZ

=
1
Z

∑
P

∏
α

Nα(P)(pα)Nα(P). (4)

Using a Lagrange multiplier λ for the constraint∑
α pα = 1, it can be shown that the requirement that

Z(S) − λ(
∑
α pα − 1) be stationary with respect to λ

and pα for all α is equivalent to

pα =
〈Nα〉∑
β〈Nβ〉

≡ fα. (5)

Using a vector notation where p = (pα|α ∈ D) con-
tains the probabilities for all words in the dictionary,
this equation can be written as p = f(p), where each
entry in the vector f depends on all components of p.
Finding the vector p that maximizes Z is equivalent
to finding the fixed point p? of the nonlinear mapping
f(p), satisfying f(p?) = p?.

Quasi-Invariance and Slow Convergence
In principle one can find the fixed point by starting with
an arbitrary initial p(0), and then converge towards p?
by iterating the mapping: p(0) → p(1) = f(p(0)) →
p(2) = f(p(1)) → · · ·. In practice however this pro-
cedure is very slow, the reason being the existence of
what we will call quasi-invariances in p-space. To ex-
plain this, let us compare two dictionaries. The first
dictionary only contains single-letter words α = r with
probabilities pr; here r denotes a letter from the alpha-
bet. The second dictionary also contains length-two
words α = rs made of letters r and s, and its proba-
bilities p′r and p′rs are related to those of the first one
by

p′r = (1− ρ)pr p′rs = ρ prps. (6)
Here ρ is a parameter that can take arbitrary values be-
tween 0 and 1, The intuitive idea behind this transfor-
mation is that when a symbol r is about to be added to a
random sequence, one could decide to postpone adding
it with probability ρ, draw a second symbol r′ and then
add both symbols to the sequence at the same time as a
length-two word. Of course nothing is really changed by
this transformation and the two dictionaries are com-
pletely equivalent (hence the term invariance). In par-
ticular, the invariance means that Z(p′) = Z(p), even
though p′ and p can be quite different. The invariance
transformation can be generalized by using independent
parameters ρr for each r (the probability with which
addition of the first symbol is postponed depends on
which symbol was drawn) and the corresponding fami-
lies of equivalent dictionaries lie on a multi-dimensional
manifold in p-space. Similar invariance transformations
exist for general dictionaries containing words of arbi-
trary length.

If a fixed point p? happens to lie on an invariant
manifold, it follows from the invariance that all other
points on the manifold are fixed points of the mapping
as well. Therefore, starting from a vector p outside the
manifold, iteration will have the effect of rapidly moving
p closer to the manifold along perpendicular directions,
but there will be no changes in p in directions parallel
to the manifold. The invariant manifolds corresponding
to the various families of equivalent models lie rather
dense in p-space. It follows that in general the fixed
point p? will not be very far from an invariant manifold,
and a quasi-invariance holds that will cause iteration of
the mapping to be quite slow in the parallel directions.
Fortunately, we can exploit our geometrical insight in
this problem to improve the converge, as decribed in
what follows.

Description of Convergence Procedure
To overcome the problems caused by the quasi-
invariance described above, we have implemented a con-
vergence scheme consisting of three parts:

1. Simple iteration of mapping p→ f(p);
2. Iteration via powers of the matrix of the lin-

earized map;
3. Newton’s method near the fixed point.

We will now describe these steps steps in some de-
tail. The first step consists of performing a number
of straightforward iterations of the mapping p → f(p)
until the difference between p and f(p) becomes small
enough to make linearization of the mapping useful.
To this end we define the matrix ∂f/∂p with entries
(∂f/∂p)αβ = ∂fα/∂pβ . It will serve as a basis for both
part 2 and 3 of the convergence procedure.

The eigenvalues of ∂f/∂p give an indication of
whether we are near a stable fixed point, as in that case
all eigenvalues should have an absolute value smaller
than unity. When this is true, Newton’s method pro-
vides an efficient way of finding the fixed point: lin-
earizing f(p) around the current probability vector p,
the approximate fixed point p∗ is solved from the vector
equation

f(p) +
∂f
∂p

∣∣∣∣
p

(p∗ − p) = p∗. (7)

Due to the nonlinearity of f(p), this procedure may
have to be repeated a number of times to achieve con-
vergence to machine accuracy, but the convergence is
quadratic and therefore quite rapid (Press et al. 1992).
The quasi-invariance discussed above are responsible for
the fact that one or more eigenvalues of ∂f/∂p are very
close to unity, so that the component of p − p∗ par-
allel to the associated eigenvector may be quite large,
thus overcoming the slow convergence associated with
straightforward iteration.

The Newton method constitutes the final and third
step of our convergence scheme. It is preceded by a
procedure that is followed when there are still one or
more unstable eigenvalues with an absolute value larger

than unity. In this case p lies in a region of mixed sta-
bility, a situation that frequently occurs in the course
of finding the fixed point as we found. The same quasi-
invariance that slow the convergence to the fixed point
when straightforward iteration is applied now prevent
the escape from the mixed-stability region along the
unstable direction. We have implemented a scheme
that applies powers of the linearized mapping as an ef-
ficient way of getting out of the mixed-stability region.
Starting from p(0) and p(1) ≡ f(p(0)), and defining
p(n) = fn(p) as the n-th iteration of the mapping, we
have in linear approximation the following set of recur-
sion relations:

p(2)− p(1) = [∂f/∂p] (p(1)− p(0))
p(4)− p(2) = [∂f/∂p]2 (p(2)− p(0)) (8)

etc. The series p(2m) with m = 0, 1, 2, 3, . . . is moni-
tored and extended until Z no longer increases or the
constraint 0 < pα < 1 is violated, in which case the last
iteration for which F (p(2m)) < F (p(0)) is used. In
our experience, repeated application of this procedure
would always move p to a region where all eigenvalues
were stable and Newton’s method could be applied. We
also found that no matter from which p one starts, the
same fixed point p∗ was reached. The three parts of
our convergence scheme together therefore constitute a
robust method for determining the apparently unique
optimal set of dictionary probabilities.

Computation of ∂f/∂p and other quantities
We will now discuss the details of calculating ∂f/∂p
from the dictionary probabilities. It is useful to define
a free energy function F as the negative of the logarithm
of the partion function Z,

F = − logZ. (9)

Solving the fixed point equation is equivalent to mini-
mizing F . Using

〈Nα〉 = −pα(∂/∂pα)F, (10)

it follows from the definition of fα in Eq. (5) that

∂fα
∂pβ

=
(
pα

∂2F

∂pα∂pβ
+ δαβ

∂F

∂pβ

)(∑
γ

pγ
∂F

∂pγ

)−1

−
(
pα

∂F

∂pα

)(
∂F

∂pβ
+
∑
γ

pγ
∂2F

∂pγ∂pβ

)

×

(∑
γ

pγ
∂F

∂pγ

)−2

. (11)

Here the Kronecker delta δαβ equals unity if α = β
and zero otherwise. The calculation of ∂f/∂p involves
both the first and second derivatives of F , which can be
computed efficiently using recursive methods common
in statistical mechanics. To derive a recursion relation
for F itself, we start by defining Z(1, i) as the partition

sum for the subsequence of S starting at the leftmost
position and ending at position i. Let the maximum
word length occurring in the dictionary be `max. We
then have

Z(1, i) =
`max∑
`=1

pσ(i,`)Z(1, i− `). (12)

Here σ(i, `) denotes the substring of length ` that ends
at position i in the sequence S; when α(i, `) is not in
the dictionary pα(i,`) = 0. The boundary condition for
Eq. (12) is given by Z(1, 1) = pσ(1,1). Iterating up to
L, the length of the full sequence S, we can determine
F = − logZ(1, L). For numerical purposes however
this form of the recursion relation is not practical, as
underflow will occur for large L. We therefore define
the ratio

R(i) =
Z(1, i)

Z(1, i− 1)
, (13)

and rewrite the recursion relation for Z(1, i) as

R(i) = pα(i,1) +
`max∑
`=2

pα(i,`)

(
i−1∏

k=i−`+1

R(k)

)−1

. (14)

The free energy can be calculated as

F = −
∑
i

logR(i). (15)

All R(i) terms are of the same order and no underflow
problems will occur. The complexity of the computa-
tion of F is O(L), i.e. the time required to compute F
scales linearly with the length of the sequence S. The
memory required scales as O(`max).

We will next show how the first derivative of F with
respect to p, required for the calculation of both f and
∂f/∂p, can be computed in an efficient manner. The
naive numerical differentiation of F with respect to each
pα would take a total time O(L × D), where D is the
number of words in the dictionary. We will show how to
directly compute ∂F/∂p using recursion relations simi-
lar to those for F , in a time scaling as O(L× `max). As
typically D � `max, a significant speedup is achieved.
The following expression holds for the derivative of F :

∂F

∂pα
= −

L∑
i=1

G(i, `α)δα,σ(i,`α), (16)

where

G(i, `) =
Z(1, i− `)Z(i+ 1, L)

Z(1, L)
, (17)

and Z(i + 1, L) is the partition function of the subse-
quence from position i + 1 to the rightmost position.
The Kronecker delta in Eq. (16) restricts the sum to
positions at which the substring σ(i, `α) is precisely the
dictionary word α for which the derivative is calculated.
When evaluating ∂F/∂pα numerically for all dictionary
words however, rather than evaluating Eq. (16) for all
α, one should compute G(i, `) for all i = 1, . . . , L and

` = 1, . . . , `max, determine α(i, `) for each pair (i, `)
and add G(i, `) to the appropriate component of ∂F/∂p
unless the substring α(i, `) does not occur in the dic-
tionary. It is exactly this procedure that allows the
speedup from O(L × D) to O(L × `max). To evaluate
G(i, `) we first introduce R′(i) as the partition function
ratio defined with respect to the rightmost position of
S,

R′(i) =
Z(i, L)

Z(i+ 1, L)
. (18)

The recursion relation for R′(i) reads

R′(i) = pα(i,1) +
`max∑
`=2

pα(i+`−1,`)

(
i+`−1∏
k=i+1

R′(k)

)−1

. (19)

We can now express G(i, `) in terms of R(i) and R′(i)
as

G(i, `) =

(
i−∏̀
k=1

R(k)
R′(k)

)(
i∏

k=i−`+1

1
R′(k)

)
. (20)

One pays for the speedup by having to keep R(i) and
R′(i) in memory, a requirement scaling as O(L), i.e.
on the order of what is needed to keep the sequence
S in memory and therefore typically not posing any
problems.

Computation of the second derivative matrix
∂2F/∂pα∂pβ occurs along the same lines. We will not
provide explicit expressions here. In this case the com-
putation time scales as O(L× `max ×D) and the space
requirement is still O(L).

Constructing the Dictionary Iteratively
When it is known which words are present in the dictio-
nary (the lexicon), the maximum-likelihood procedure
described above can be used to determine the probabili-
ties p for all the words given sequence data S. However,
when analyzing a set of unknown DNA sequences, one
has no a priori information about which words should
be in the dictionary. Intuitively, to build a dictionary
from the sequence, one would start from the frequency
of individual letters, find overrepresented pairs and add
them to the dictionary, determine their probabilities,
and continue to build larger fragments in this way. Here
we describe approaches to add new words to the exist-
ing dictionary.

If a given dictionary is supposed to give an accu-
rate statistical description of S, any quantity derived
from the sequence should be correctly predicted by the
model. In particular, the frequency with which two
dictionary words occur as neighbors in a partitioning P
of S can be computed and compared with the model
prediction. We have

〈Nαβ〉 = pαpβ

L∑
i=1

G(i, `α + `β)δα,σ(i−`β ,`α)δβ,σ(i,`β).

(21)

The model predicts 〈Nαβ〉 = Navpαpβ , where Nav =
L/〈`〉 is the average number of words in a partition,
with 〈`〉 =

∑
α `αpα the average word length. There

are of course statistical fluctuations arising from the fi-
nite length of S. By using a Z-score, quantifying the
difference from the expected value in units of the stan-
dard deviation of these fluctuations,

Zαβ =
〈Nαβ〉 −Navpαpβ√

Navpαpβ
, (22)

all possible pairs (α, β) can be tested for overrepresen-
tation on the same footing.

The detection of overrepresented word pairs suggests
an iterative scheme that starts from a dictionary con-
taining only the four single bases. At each step, the
probilities p are determined, Z-scores are calculated as
defined in Eq. (22) and pairs with a Z-score above a
specified threshold are added to the dictionary as new
words. This procedure is repeated until the Z-score for
all word pairs is below threshold. In a more systematic
approach that takes the changing size of the dictionary
into account, the Z-scores are converted into P values
using Gaussian distribution, and a P value threshold is
used. Typically we set P = 1/Npair, where Npair is the
number of pairs tested.

For DNA sequences, it is possible to check all
oligomers up to a certain length and add those that
are over-represented to the dictionary. A practical up-
per limit for this length is 8. The threshold cutoff for
P value in this case is typically set to 1/Noligo, where
Noligo is the total number of oligomers screened.

An Example Using English Text

To illustrate the power of the iterative approach de-
scribed above, consider a string of letters from the En-
glish alphabet that results when all spaces and special
characters are removed from the first ten chapters of
the novel “Moby Dick” by Melville:

chapterloomingscallmeishmaelsomeyearsago
nevermindhowlongpreciselyhavinglittleorn
omoneyinmypurseandnothingparticulartoint
erestmeonshoreithoughtiwouldsailaboutali
ttleandseethewaterypartoftheworlditisawa
yihaveofdrivingoffthespleenandregulating
thecirculationwheneverifindmyselfgrowing
ynovemberinmysoulwheneverifindmyself....

When the initial dictionary {a,b,c,...,z} consisting only
of single letters is fit to this sequence, the probability p
for each word equals the frequency at which it occurs
in the sequence data:

Word p
e 0.120937
t 0.091602
a 0.081246
o 0.077359
n 0.070587
i 0.068853
s 0.066141
l 0.043776
...

...

To determine which new words should be added to the
dictionary, overrepresented adjacent pairs of letters are
identified by calculating the Z-score for all pairs. The
result of this procedure, sorted by Z-score, sorted as
follows:

Left Word Right Word Z-score
t h 106.20
n g 71.09
i n 68.42
q u 67.12
h e 64.02
...

...
...

t n -21.80
a o -22.77
a a -23.95
o e -26.34
a e -28.84

Only the most positively and negatively correlated pairs
are shown, but there are many more significantly over-
represented word pairs. These are all added to the dic-
tionary, and the new dictionary is fit to the sequence
data:

Word p
e 0.094990
s 0.063027
t 0.054711
a 0.054319
i 0.049299

th 0.039866
o 0.039622
d 0.038558
r 0.030454
n 0.028323
...

...

The combined steps of adding overrepresented pairs to
the dictionary followed by a new fit represent one step
in an iterative procedure. After another such iteration
step has been performed, the dictionary is:

Word p
e 0.072890
s 0.067527
a 0.043389
t 0.040361
d 0.036406
i 0.034153

the 0.025849
o 0.022180
r 0.018498
f 0.018392
...

...

After only three such iterations, words up to length
eight can be present in the dictionary.

To quantify the significance of a word α with respect
to its fragments, we define a significance score or word
quality Q as

Qα =
Navpα√

Nav(Z(α)− pα)
, (23)

where Z(α) is the partition function for the word α.
Note that Q has the character of a Z-score and gives
a measure of how much more often the word α occurs
in S than is expected by chance due to concatenations
of fragments of α that also occur as dictionary words.
Alternatively, one could rank words by 〈Nα〉/Ξα, where
Ξα denotes the total number of occurrences of the word
α in the sequence S, in which case one measures with
what frequency the string α is delineated as a separate
word in the partitioning of S.

That the iteration procedure works well is illustrated
by the fact that after three steps the statistically most
significant dictionary words are:

Word Q
enough 7080.30
harpoon 3646.40

black 2874.70
rough 1835.40
would 1294.60
though 1068.60
from 995.20
could 853.40
jona 763.90

hipma 701.60
with 679.50
you 480.30
ship 423.00
think 341.60
and 328.00

world 313.80
whale 253.70
wild 250.50

hould 245.80
back 236.90

whaling 232.70
...

...

Analyzing Upstream Regions in Yeast
The present paper is intended as a detailed description
of our novel, dictionary-based method for discovering
motifs in large sequence datasets by means of an intrin-
sic analysis of the sequence based on statistics alone.
We have applied our algorithm to all the upstream re-
gions of the yeast Saccharomyces cerevisiae and will
describe some of the results in this section. Some of the
data on which this discussion is based are available at
www.physics.rockefeller.edu/siggia/ISMB-2000.
Further details are provided in a separate publication
(Bussemaker, Li, & Siggia 2000).

For applications to yeast we took for our sequence
data all regions upstream of the ∼ 6000 ORFs in yeast
of maximum length 600bp and not overlapping with
any coding region on either strand. All exact repeats
of length 16 or greater were removed since almost all of
these are poly A strings, transposons, or other repeats
that do not contain regulatory sites. The restriction
to strictly noncoding sequence increases the density of
functional sites somewhat and more importantly does
not mix data with very different background statistics
as signified, say by the frequency of length 3 words as
codons.

A dictionary was prepared starting from single bases,
and words were added in order of increasing length so
as to fit the data with the fewest parameters possible.
After each cycle of word addition, the dictionary prob-
abilities were converged, and marginal words with low
Qα or pα corresponding to less than one copy per data
set were discarded. The prediction of new words based
only on the juxtaposition of the current dictionary en-
tries missed relevant signal in contrast to the English
example above. Thus we checked that the dictionary
model fit the frequency of all oligomers up to length
8, and added those which were underpredicted. (Less
than 1% of all 8-mers actually occur in the dictionary,
the rest are fit by smaller fragments.) Subsequently
we checked clusters of oligomers with similar sequences
which can be statistically significant even when the
component oligomers agree with theory within fluctua-
tions. Finally, juxtaposition alone was used to predict
words longer than 8.

The final dictionary had 1200 words, of which 100
were clusters of similar oligonucleotides. Two thirds
of the sequence data was segmented into single letter
words, and an additional 15% into words of length 4 or
less. About 500 dictionary entries fell above a plausi-
ble significance level. These included good matches to
about half of the motifs found in (Spellman et al. 1998;
Chu et al. 1998; van Helden, André, & Collado-Vides
1998) including the MCB, SCB, and MCM1 cell-cycle
motifs and URS1 for sporulation. We also found ∼ 400
significant dimer motifs in the form of two short seg-
ments separated by a gap. These could be clustered by
sequence similarity into 20-30 groups, which included

matches to the ABF1, RAP1, GAL4, and MCM1 sites
plus many other statistically significant clusters which
did not match any known sites.

Out of the 443 non-redundant sites of length 5 or
greater in the database of (Zhu & Zhang 1999), our
dictionary words hit 94 by strict inclusion (i.e., our pre-
dicted words are inside the experimentally determined
sites), and hit 135 sites by 4 or more bases overlap. Our
overlap criterion is not unreasonable since almost all the
dictionary words are longer than 5 bases, and while the
database reports only sites with experimental evidence
for function, there is no guarantee that the complete
functional region has been isolated. For either defini-
tion of “hit” we computed the statistical significance of
the number of sites identified by first marking the dic-
tionary words on the data set and then treating the 443
data base sites as intervals of corresponding length to be
placed at random in the non-coding regions. This elimi-
nates the effects of correlations in the dictionary words.
Under either definition of “hit” the number of sites hit
by our dictionary words is 15 standard deviations be-
yond expectation. The sites hit by the dimer motifs,
by inclusion, is 26 sites vs 2.7 expected by chance. As
additional controls for the statistical significance of our
matches, we scrambled the letters in each dictionary
word and hit by inclusion only 33 sites (vs 94 with the
dictionary words). (The motif lists of Brazma et al 1998
when subject to the same filters as our dictionary words
hit 30 sites by inclusion.) In contrast to less systematic
assignments of probability, our dictionary fits the copy
number of all strings of length 8 or less, plus certain
classes of clusters of which the members are related by
a couple of single base mutations. Thus we can say that
for the categories of motifs we search for exhaustively,
∼ 64−75% of the experimental sites are not statistically
over-represented. This of course does not exclude the
possibility that some of these experimental sites escape
our detection due to their great variability, or some of
the experimental assignments are incorrect.

More specific dictionaries were prepared for the up-
stream regions of all genes that respond to sporulation
(Chu et al. 1998) or the cell cycle (Spellman et al.
1998). They recover most of the known motifs and sug-
gest many new ones. In contrast to other algorithms
that have been used on these data sets, we do not
perform any preliminary clustering of the expression
data and can detect motifs represented in only ∼ 10
out of ∼ 6000 genes. For the sporulation data set in
particular we obtain clusters of dictionary words that
match very well with the two well characterized reg-
ulatory sites, URS1 (consensus 5’-DSGGCGGC) and
MSE (5’-CRCAAAW). Several of our most significant
words are refinements of the mid-sporulation element
(MSE) and do a better job than the canonical motif
in distinguishing genes that respond during sporulation
from those that do not. (The canonical MSE pattern
is contained in 134 out of 480 up regulated genes (Chu
et al. 1998), but 832 other genes with the same motif
within 600bp upstream do not respond in sporulation.)

We also obtained several new clusters, some of which
correlate significantly with the expression data.

Previous approaches to the detection of cis-regulatory
elements have generally worked from small (100 or less)
clusters of genes. The authors (van Helden, André, &
Collado-Vides 1998) compare oligomer frequencies be-
tween the cluster of interest and a random sample of
upstream regions. This does not work genome-wide
and requires one to preselect the cluster rather than let-
ting the presence of common motifs define the clusters
(which are probably overlapping). Genome-wide ap-
proaches that use a random sample of the yeast genome
to assign probabilities can be biased by gross differ-
ences between coding and noncoding sequence (Brazma
et al. 1998). Codes that find all maximal regular ex-
pressions (those that can not be made more precise
without loosing elements) also can characterize a clus-
ter of genes (Rigoutsos & Floratos 1998); no proba-
bilities however are used during the generation pro-
cess, and the simplest possible sequence model (based
on single base frequencies only) is used to assess the
significance of the results a posteriori. Data compres-
sion algorithms, despite a similarity in terminology (e.g.
“adaptive dictionary” for the Ziv-Lempel code family),
satisfy very different design criteria (an invertible cod-
ing constructed on a single pass) than the data model
we fit to. They would attempt to compress data con-
structed by randomly drawing single bases by encoding
repeated substrings. Hidden Markov models are a com-
mon way to segment biological data, but they are gen-
erally employed with relatively few segment types (e.g.
promoter, exon, intron) each described by many pa-
rameters; we work with many segments, most described
by a single parameter. We can not treat as yet long,
fuzzy patterns such as protein motifs over the 20 letter
alphabet, for which weight matrix methods were de-
signed (Stormo & Hartzell 1989; Lawrence et al. 1993;
Bailey & Elkan 1994) but there are many interesting
motifs in yeast which are less than 10bp long and have
only a few variable sites, and thus within the purview
of our method.

References
Bailey, T., and Elkan, C. 1994. Fitting a mixture
model by expectation maximization to discover motifs
in biopolymers. Proceedings ISMB’94 28–36.
Brazma, A.; Johnassen, I.; Vilo, J.; and Ukkonen, E.
1998. Predicting gene regulatory elements in silico on
a genomic scale. Genome Res. 8:1202–1215.
Bussemaker, H. J.; Li, H.; and Siggia, E. D. 2000.
Building a dictionary for genomes: Identification of
presumptive regulatory sites by statistical analysis.
Submitted.
Chu, S.; DeRisi, J.; Eisen, M.; Mulholland, J.; et al.
1998. The transcriptional program of sporulation in
budding yeast. Science 282:699–705.
Eisen, M. B.; Spellman, P. T.; Brown, P. O.; and
Botstein, D. 1998. Cluster analysis and display of

genome-wide expression patterns. Proc. Natl. Acad.
Sci. U.S.A. 95:14863–14868.
Lawrence, C. E.; Altshul, S. F.; Boguski, M. S.; Liu,
J. S.; et al. 1993. Detecting subtle sequence signals:
a gibbs sampling strategy for multiple alignment. Sci-
ence 262:208–214.
Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; and
Flannery, B. P. 1992. Numerical Recipes in C. Cam-
bridge University Press.
Rigoutsos, I., and Floratos, A. 1998. Combinato-
rial pattern discovery in biological sequences: The
TEREISIAS algorithm. Bioinformatics 14:55–67.
Spellman, P. T.; Sherlock, G.; Zhang, M. Q.; et al.
1998. Comprehensive identification of cell cycle-
regulated genes of the yeast saccharomyces cerevisiae
by microarray hybridization. Mol. Biol. Cell 9:3273–
3297.
Stormo, G. D., and Hartzell, G. W. 1989. Identifying
protein-binding sites from unaligned DNA fragments.
Proc. Natl. Acad. Sci. U.S.A. 86:1183–1187.
van Helden, J.; André, B.; and Collado-Vides, J. 1998.
Extracting regulatory sites from the upstream region
of yeast genes by computational analysis of oligonu-
cleotide frequencies. J. Mol. Biol. 281:827–842.
Zhu, J., and Zhang, M. Q. 1999. SCPD: A promoter
database of yeast saccharomyces cerevisiae. Bioinfor-
matics 15:607–611.

