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Sherlock: Detecting Gene-Disease Associations
by Matching Patterns of Expression QTL and GWAS

Xin He,1,2 Chris K. Fuller,1 Yi Song,1 Qingying Meng,3 Bin Zhang,4 Xia Yang,3 and Hao Li1,*

Genetic mapping of complex diseases to date depends on variations inside or close to the genes that perturb their activities. A strong

body of evidence suggests that changes in gene expression play a key role in complex diseases and that numerous loci perturb gene

expression in trans. The information in trans variants, however, has largely been ignored in the current analysis paradigm. Here we pre-

sent a statistical framework for genetic mapping by utilizing collective information in both cis and trans variants. We reason that for a

disease-associated gene, any genetic variation that perturbs its expression is also likely to influence the disease risk. Thus, the expression

quantitative trait loci (eQTL) of the gene, which constitute a unique ‘‘genetic signature,’’ should overlap significantly with the set of loci

associated with the disease. We translate this idea into a computational algorithm (named Sherlock) to search for gene-disease associa-

tions from GWASs, taking advantage of independent eQTL data. Application of this strategy to Crohn disease and type 2 diabetes pre-

dicts a number of genes with possible disease roles, including several predictions supported by solid experimental evidence. Importantly,

predicted genes are often implicated by multiple trans eQTL with moderate associations. These genes are far from any GWAS association

signals and thus cannot be identified from the GWAS alone. Our approach allows analysis of association data from a new perspective and

is applicable to any complex phenotype. It is readily generalizable to molecular traits other than gene expression, such as metabolites,

noncoding RNAs, and epigenetic modifications.
Introduction

Recent application of genome-wide association studies

(GWASs) to complex human diseases led to the discovery

that the majority of disease-associated variants (estimated

to be as high as 88%) are located in noncoding sequences,

potentially affecting gene expression rather than protein

function.1,2 Because of the complexity of gene regulation,

the expression of a gene can be modulated bymutations in

cis (proximal to the gene) and/or in trans (distal to the gene

or on different chromosomes, such as upstream transcrip-

tion/chromatin factors, distal regulatory elements, etc.).3,4

As a result of a large mutational target size (primarily

because of mutations in trans) and the buffering of gene

regulatory systems that helps tolerate expression changes,

genetic variants altering expression levels are common in

populations.5 Indeed, many studies of expression quanti-

tative trait loci (eQTL) demonstrate that the expression

of most genes is influenced bymultiple loci, most of which

act in trans.6–9 Despite their individually small effect sizes,

trans eQTL are collectively important for variation of gene

expression and by some estimates account for a larger pro-

portion of the heritability of gene expression than do cis

eQTL.8,10

Because of their prevalence in the human population,

expression variations, especially those in trans, provide sys-

tematic perturbations of the gene regulatory networks un-

derlying various complex phenotypes, and as such might

reveal important information about the genetic basis of

these phenotypes. Thus there is a pressing need to develop

a general framework to mine the collective information in
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both cis- and trans-expression QTL in the context of associ-

ation studies. So far, information from trans variations has

largely been ignored because only cis variants can be as-

signed to their target genes based on proximity by using

the GWAS data alone. The growing collection of eQTL

data for various human tissues makes it possible to asso-

ciate trans variants with target genes.8 Although previous

studies demonstrated the utility of eQTL data for aiding

the analysis of association studies,9,11 most of these used

only cis eQTL located close to the genes. This reflects

some fundamental difficulties of utilizing information in

trans. Because trans eQTL are usually much weaker than

those in cis, the statistical signal of an individual trans

eQTL is difficult to detect—it may fall far below the

genome-wide threshold.9 Another major challenge is the

pleiotropic effect of trans variation. A gene’s trans perturba-

tion may come from the mutation of a regulatory mole-

cule, but this mutation may also affect multiple other

genes.

Here we present a general strategy to infer genes whose

perturbations contribute to the etiology of complex dis-

eases by tapping into statistical information provided

by both cis and trans variations affecting gene expres-

sion. Although individual variants are often weak and

not particularly informative, the overall pattern of

expression variants of a gene can provide a strong statis-

tical signal. A unique aspect of this strategy is that

because we utilize trans variants far from target genes,

it is possible to identify important genes distal to any

GWAS association signals and thus impossible to detect

with GWAS alone.
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To illustrate the basic concept, we consider a gene whose

expression level may influence the risk of a complex dis-

ease. There may be multiple variants in the genome that

affect the expression of this gene in a disease-related tissue

(these are expression SNPs, or eSNPs; technically eSNPs are

only in linkage disequilibrium with the causal variants,

though we do not make the distinction here). A change

of genotype at any of these eSNPs will lead to a change

of expression level, which could in turn alter the disease

risk (Figure 1A). Therefore, many of these eSNPs are likely

to be associated with the disease as well. In general, each

gene has a different set of eSNPs across the genome, with

different effect sizes, reflecting the unique regulatory pro-

gram governing the expression of this gene. The character-

istic pattern of all genetic associations with the expression

of a gene thus constitutes a unique ‘‘genetic signature’’ of

this gene (Figure 1B, top). Similarly, we can define the ge-

netic signature of a phenotype as the statistical association

of all the loci in the genome to the phenotype. If the

expression level of a gene influences the disease risk, the

genetic signature of this gene should match, at least

partially, the genetic signature of the disease (Figure 1B,

bottom).

Our analysis identifies potential gene-disease association

by matching the genetic signature of a gene to that of the

disease, using the GWAS data of the disease and the eQTL

data of a related tissue. It is worth emphasizing that we do

not directly test the statistical relationships between geno-

types, gene expression, and phenotypes, as done by earlier

methods.12 Thus, the eQTL and GWAS data do not have to

come from the same subjects. Instead, the eQTL data pro-

vide information of the genetic signatures of many genes,

and then in an independent GWAS of some phenotype,

the match of a gene’s signature with the GWAS would sug-

gest that the gene plays a role in that phenotype. This is

much like how a detective works (hence the name of our

algorithm, ‘‘Sherlock’’): he compares the fingerprint from

a crime scene (like our GWAS association data) against a

database of fingerprints (like our eQTL data) to determine

the real culprit (the genes whose expression levels influ-

ence the disease risk).

We implement this idea of genetic signature matching

by using a Bayesian statistical framework. Instead of

applying a stringent cutoff, we utilize both strong and

moderate SNPs in the eQTL and GWAS data. The statistical

model allows us to access information in the moderate

SNPs without introducing many false signals. Application

to two well-studied diseases shows the promise of our

approach. We predicted ten genes associated with Crohn

disease (MIM 266600), six of which are highly plausible

based on literature evidence. With an independent

GWAS data set, all but one gene were replicated. Among

our four predicted genes associated with type 2 diabetes

(T2D [MIM 125853]), three are supported by experimental

evidence from literature, and the other is a promising

candidate based on a combined analysis of multiple

genomic data sets.
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In summary, our approach allows the analysis of associ-

ation studies from a different perspective and, as we

demonstrate, enables the discovery of genes and pathways

missed by the traditional GWAS analysis. We have con-

structed a web-based resource to facilitate the application

of our method. We collected eQTL data sets from multiple

human tissues and provided the software to search for

gene-disease associations with the disease GWAS as a query

(only p values are needed). With the increasing collection

of eQTL data (as well as QTL of other molecular pheno-

types), we expect that these resources/tools will become

an important platform for interpreting the results from as-

sociation studies.
Material and Methods

Statistical Model
Given a gene and the disease of interest, our method tests whether

the expression change of the gene has any effect on the risk of the

disease, using the information of N putative eSNPs of the gene

(passing some low significance threshold in the eQTL data). We

define binary indicator variables Ui and Vi to represent whether

the ith SNP is associated with the expression and the disease trait,

respectively, and a binary indicator variable Z to represent

whether the gene is associated with the disease (Figure 1A). Our

data consist of the p values of SNPs relative to the gene expression

trait (eQTL profile), denoted as vector x, and the p values of the

SNPs relative to the phenotypic trait (GWAS profile), denoted as

y. Although Ui and Vi are not observed, they are related to xi and

yi: when xi(yi) is small (i.e., the SNP is highly significant), it is likely

that Ui(Vi) is true.We use the data x and y to test the hypothesisH0

(i.e., Z ¼ 0) that the gene is not associated with the disease versus

the alternative hypothesis (H1). The dependencies of the statistical

variables are shown in Figure 1D. We describe some intuitions of

our model. Under H0, the gene is irrelevant to the phenotype,

and thus Ui and Vi, are independent in a statistical sense

(Figure 1D, top). Under H1, a true eSNP of the gene is expected

to be associated with the phenotype (Figure 1A). In other words,

whenever Ui is true, Vi should also be true under H1 (Figure 1D,

bottom).

Our inference is based on the posterior ratio, defined as:

PðZ ¼ 1 j x; yÞ
PðZ ¼ 0 j x; yÞ ¼

PðZ ¼ 1Þ
PðZ ¼ 0Þ3

Pðx; y jZ ¼ 1Þ
Pðx; y jZ ¼ 0Þ: (Equation 1)

The first term in the right side is the ratio of the prior probabilities

ofH1 andH0. Typically, the prior ratio is small because only a small

fraction of all genes are expected to be associated with a disease.

The second term is the ratio of model evidence (i.e., the probabil-

ity of data under H1 or H0) called the Bayes factor (BF). The BF is

similar to the familiar likelihood ratio test and does not depend

on the prior probabilities. We will focus on computing the BF

for the inference task.

We assume all SNPs are unlinked (see below for LD blocks).

The BF of the gene expression trait is the product of the BF of all

SNPs:

B ¼
Y
i

Bi ¼
Y
i

P
�
xi; yi jZ ¼ 1

�
P
�
xi; yi jZ ¼ 0

�: (Equation 2)
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Figure 1. The Sherlock Algorithm: Matching Genetic Signatures of Gene Expression Traits to that of the Disease to Identify Gene-
Disease Associations
(A) Perturbation of the expression level of a disease-associated gene at any of its eQTL changes the disease risk, and thus the
eQTL tend to be associated with the complex disease as well (the dashed lines). The eQTL associations may contain false
positives, so we use binary indicator variables, U, to represent the true SNP-gene expression relationship; similarly we use indicator
variables, V, for the SNP-disease relationship. Z is a binary variable indicating whether the expression trait influences the disease
risk.
(B) Hypothetic genome-wide association plots of the causal expression trait (top) and a complex disease (bottom). The genetic
signature of the gene expression trait partially overlaps with that of the disease. Red arrows indicate the matched loci.
(C) Alignment of genetic signatures of a gene expression trait and the phenotype. Three different scenarios are shown, represented
by the green, red, and black boxes.
(D) The probabilistic model representing the dependency of the variables. The semantics of the variables U, V, and Z are shown in
(A). When Z ¼ 0, U and V are independent (top). When Z ¼ 1, V depends on both Z and U; if U ¼ 1, then V is also likely to be 1
(bottom). The association statistics of a SNP with respect to the gene expression trait and the disease (x and y) depend on the
hidden variables U and V. Shaded and open circles indicate observed and latent variables, respectively.
The likelihood function at each SNP at a given Z is computed by

summing over the hidden variables Ui and Vi:

P
�
xi; yi jZ

� ¼X
Ui ;Vi

PðUiÞPðVi jZ;UiÞPðxi jUiÞP
�
yi jVi

�
: (Equation 3)

Ui is a Bernoulli random variable with the success probability a

(the prior probability of a SNP being associated with the expres-

sion trait). The information about the gene-disease relationship

is encoded in the conditional probability P(Vi j Z, Ui). When

Z ¼ 0 or when Z ¼ 1 and Ui ¼ 0 (a false eSNP), Vi is a Bernoulli

random variable with the success probability b (the prior probabil-

ity of a SNP being associated the phenotype). When Z ¼ 1 and

Ui ¼ 1, according to our discussion before, Vi should also be 1.

The probability terms P(xi j Ui) and P(xi j Vi) reflect the distribution

of p values under the null or alternative hypothesis, and we derive

these distributions in Appendix A.
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The Bayes factor defined in Equation 2 can be expressed in terms

of the following variables:

Bi;x ¼ Pðxi jUi ¼ 1Þ
Pðxi jUi ¼ 0Þ Bi;y ¼

P
�
yi jVi ¼ 1

�
P
�
yi jVi ¼ 0

�: (Equation 4)

These are the Bayes factors measuring the association of the ith

SNP with the expression and the phenotypic trait, respectively.

We show, in Appendix B, that the BF of the ith SNP in Equation

2 is given by

Bi ¼ 1� a

1� aþ aBi;x

þ aBi;x

1� aþ aBi;x

Bi;y

1� bþ bBi;y

: (Equation 5)

Thus the Bayes factor of the gene being tested depends only on the

parameters a, b, and the SNP-level Bayes factors. If Bayesian

inference has been performed in both the eQTL and GWAS anal-

ysis, it is straightforward to combine the resulting BFs to obtain

the BF for the gene.
erican Journal of Human Genetics 92, 667–680, May 2, 2013 669



Dealing with Linkage Disequilibrium
For multiple adjacent SNPs, we use a block-level BF in Equation 2.

According to Duan et al.,13 a block is defined as a region of the

genome containing one or more eSNPs associated with the same

gene and having a between-eSNP interval of <500 Kb. Although

this criterion appears somewhat arbitrary, it does not have a large

impact on our analysis primarily because by defining eSNPs with

a certain threshold (p<10�5),most eSNPsnaturally fall intoblocks.

To combine the BFs of individual SNPs in a block, we follow Servin

and Stephens:14 the block-level BF is themeanof the BFs of all SNPs

in that block. It has been shown that this simple averaging is a

reasonable way of dealing with dependent SNPs in a region.14
Model Analysis
To gain some intuition into our method, we show that it leads to a

scoring scheme that is similar to sequence alignment but with an

inherent asymmetry (Figure 1C).15 According to Equation 2, the

total score (logarithm of BF, or LBF) of a gene is the sum of LBF

of each SNP, written as Si ¼ logBi. We discuss the value of Si for

different types of SNPs. We first note that in Equation 5, both a

and b are small numbers (prior probabilities, typically less than

0.01). For a SNP not associated with the gene expression trait,

Bi,x < 1, thus aBi,x � 1, according to Equation 5, Si z 0. These

SNPs are not informative, regardless of their association status

with the phenotype. For the informative SNPs, we consider only

very strong eSNPs for simplicity of analysis, aBi,x [ 1, and we

have this approximation:

Si ¼ log Bi z log
Bi;y

1þ bBi;y

: (Equation 6)

We analyze three possible cases depending on the strength of as-

sociation of a SNP with the phenotype. (1) The SNP is strongly

associated with the phenotype bBi,y [ 1, and thus we have Si z

log(1/b). This is a positive number and represents the reward

when the signatures of the two traits match at this SNP. (2) The

SNP is moderately associated with the phenotype Bi,y > 1 but

bBi,y � 1, and thus we have Si z logBi,y > 0, representing the

positive but smaller contribution of the SNP. (3) The SNP is not

associated with the phenotype Bi,y < 1, and thus we have the

approximation Si z logBi,y < 0. The negative score represents

the evidence against the gene.

This analysis allows us to understand some properties of the

model. First, the score of any SNP is always bounded by log(1/b),

even if the SNP reaches extremely low p values. Thus the LBF of

a gene is generally not dominated by a single SNP (except for genes

with relatively few eSNPs). Another property of the model is that

the score of a SNP moderately associated with the phenotype

(Si z logBi,y) is not sensitive to the parameter b. Thus we see that

b determines the relative contribution of strong versus weak

SNPs: a smaller value of b favors a single strong SNP over multiple

weaker ones. In general, we believe that genes supported by multi-

ple SNPs are more interesting than those supported by single

strong SNPs, which are probably due to the pleiotropic effects of

SNPs (SNPs independently associated with gene expression and

the phenotype). This suggests that we should use a relatively high

value of b. Meanwhile, this would lead to a conservative estimate

of the Bayes factor (because themaximumLBF per SNP is log(1/b)).
Statistical Significance of Bayes Factors
We use simulation to compute the p values of the BFs, a procedure

known as Bayes/non-Bayes compromise.14 To generate the null
670 The American Journal of Human Genetics 92, 667–680, May 2, 2
distribution of the BFs, we fix the eQTL profiles (the p values of pu-

tative eSNPs) of all the genes and randomize the GWAS data K

times (see below for the details of randomization). The resulting

BFs of all genes over all the K-simulated GWAS data sets then

form the genome-wide null distribution. The p value of each

gene is estimated from the ranking of its BF in this null distribu-

tion. We used K ¼ 50 in our experiments.

To create a randomized GWAS data set, we follow the procedure

described in Liu et al.16 Note that we need to generate randomized

GWAS data only for all the putative eSNPs across all genes, because

other SNPs will not enter the BF calculation. For each gene, we first

divide all its putative eSNPs into blocks, then the p values of each

block are sampled independently: within each block, a multivar-

iate normal (MVN) random vector is sampled with the covariance

matrix matching the LD structure of the block, and the vector is

then converted to p values of SNPs. It has been shown that this

MVN-based approach is a very good approximation of the full per-

mutation procedure (random swapping of cases and controls).16

We choose not to perform permutation of eQTL data because

our statistical procedure depends on the alignment of the eQTL

and GWAS profiles, which are relative to each other. Thus

permuting GWAS data should be equivalent to permuting eQTL

data. In practice, permuting eQTL data is more difficult to imple-

ment, because there are correlated structures in eQTL data that

are difficult to account for and the genotype data of eQTL are

generally not available.
Choice of Parameters
Theparametersa andb specify theprior probabilities of a SNPbeing

associated with an expression and a phenotypic trait, respectively.

We further distinguish between cis and trans eSNPs: a should be

higher for cis eSNPs (within 1Mb of the gene) than for trans eSNPs.

Asper theguidelines in literature,17wechose thesevalues:a¼1.03

10�3 (cis) and 5.03 10�5 (trans), b ¼ 1.03 10�3. We provide some

intuitive explanation of these parameters. If we assume there are a

total of one million SNPs, the number of SNPs close to a gene

(within 1 Mb of the coding sequence) is roughly 1,000,000/

3,000,000,0003 2,000,000¼ 1,000 (only order-of-magnitude esti-

mate is made here). Assuming a gene has one cis eSNP, the prior

probability a for SNPs in cis is 1/1,000¼ 10�3. For trans eSNP, we as-

sume that a genemayhavea relatively largenumberof eSNPs across

the genome, say 50, then the prior probability for SNPs in trans is

50/1,000,000 ¼ 5.03 10�5. Our selection of the value of b is based

on the following: (1) complex traits are knowntobe associatedwith

hundreds of loci,18 and (2) according to the discussion in the sec-

tion ‘‘Model Analysis,’’ a somewhat high value of b is preferred for

our model. We chose b ¼ 10�3 in our experiments.

For a SNP associated with a trait, we assume that its effect size

follows a prior normal distribution Nð0;s2
aÞ. The default value of

the prior variance parameter is 0.5 for expression traits and 0.2

for phenotypic traits, based on earlier studies.14,17 We note that

these parameters are not necessary if the Bayes factors of SNP asso-

ciations are available from eQTL and GWAS analysis, according to

Equation 5. In addition to these prior parameters, the method also

requires the disease prevalence (5.0 3 10�4 for Crohn disease and

0.1 for type 2 diabetes) and allele frequencies for each SNP (from

HapMap).
Computational Experiments
The eQTL and GWAS data were downloaded from their respective

sources. Because only putative eSNPs are informative, we applied a
013



weak cutoff to eQTL based on p values: p < 10�5 for trans associa-

tions and p < 10�4 for cis associations. Each gene with at least one

putative eSNP is scored by our program.

In the replication experiment for Crohn disease, we took the

meta-analysis data from IBD Genetics Consortium.19 Because

this data set includes some data we used for predicting disease

genes, we removed it by using the weighted subtraction algorithm

in Zhong et al.,20 and this gave about 2,000 cases and 7,000 con-

trols.

Coexpression Analysis of PURB
The gene expression data were taken from several studies in hu-

mans21–23 and various mouse crosses.12,24,25 The weighted coex-

pression networks were constructed with previously described

methods to derive subnetworks or modules containing highly cor-

egulated genes from each tissue.26 We retrieved all network mod-

ules that contain PURB from all coexpression networks and then

extracted all genes that share module membership with PURB as

PURB-coexpressed genes. These genes are then ranked by how

often they appear with PURB in the same modules.
Results

Genetic Signature Matching Algorithm: Sherlock

Our algorithm takes as input the association results from

independent eQTL and GWAS experiments and aims to

identify genes whose expression levels may influence the

disease risk. It uses summary statistics (p values of the asso-

ciations), but does not require the genotype and pheno-

type data. As discussed previously, it assumes that such

genes will have multiple, coincident loci with elevated sig-

nificance in both the GWAS and eQTL data sets (Figures 1A

and 1B). The algorithm scores the significance of the over-

lap by the statistical model described in Material and

Methods.

To see why significant overlap supported bymultiple loci

may imply causality, we consider two alternative sce-

narios.12 In the first scenario, a SNP may affect the disease

and also happen to affect the expression of a gene that has

nothing to do with the disease. However, the likelihood

that multiple disease-associated SNPs happen to affect

the expression of the same gene by chance is very small.

In the second scenario, the disease may compromise the

gene expression patterns of relevant cells, causing some

expression traits to share loci with the disease. This sce-

nario is also unlikely because the eQTL mapping used for

our analysis is usually performed in individuals unrelated

to the GWAS phenotype, and thus the disease loci gener-

ally should not affect gene expression in these samples.

Intuitively, our algorithm performs an alignment of the

genetic signature of one phenotypic trait against an

expression trait. For any SNP, there are potentially three

scenarios, depending on the association of the SNP with

the two traits (Figure 1C). Any SNP that appears to be asso-

ciated with both traits contributes a positive score to the

gene (Figure 1A). Any SNP associated with the expression

trait but not the disease is evidence against the role of

the gene, contributing a negative score. The third type of
The Am
SNPs are associated with the disease but not the expression

of the gene being tested. Because they are not informative

for this gene at the expression level, they will not

contribute to the score of the gene.

We compute the Bayes factor (or its logarithm, LBF) for

each gene (see Material and Methods), which evaluates ev-

idence supporting that the gene is associated versus not

associated with the disease. Specifically, we first compute

the LBF score of each putative eSNP of the gene being

tested, which represents how strongly the SNP supports a

functional role of this gene (see Material and Methods).

The LBF score of a SNP is analogous to the nucleotide

matching scores in sequence alignment, with the sign of

the score corresponding to the three situations described

above (also see Material and Methods, ‘‘Model Analysis’’).

For the cases where multiple SNPs in LD are associated

with a gene, we define a block-level LBF and treat them

as if they were a single SNP (see Material and Methods,

‘‘Dealing with Linkage Disequilibrium’’). Herein, the set

of all eSNPs of a gene are represented by a set of indepen-

dent eSNPs, each of which may actually represent a block

of adjacent SNPs. The total LBF score of a gene is the sum

of LBFs of all SNPs. The value of the LBF score of a gene re-

flects the strength of evidence: for example, a LBF of 2.3

means that the posterior probability of the gene being

associated with the disease is exp(2.3) ¼ 10 times more

likely than the opposite hypothesis assuming that the

two hypotheses are equally likely a priori. In practice, a

gene is a priori far more likely to be unrelated to the dis-

ease, so we generally demand a high LBF (e.g., at least 4.0).

Although BFs can be directly used for inference under a

purely Bayesian framework,27 we take an approach, known

as Bayes/non-Bayes compromise, to compute the p values

of the BFs based on simulations. This has the advantage

that the results are less sensitive to the prior assump-

tions.14 Ideally, the simulation procedure would permute

the case/control labels of the subjects in the GWAS data

to obtain the null distribution of the BFs (we discuss in

Material and Methods why permutation is applied only

to the GWAS and not to the eQTL data). In practice, this

requires genotype data (which is generally not publicly

available) and is computationally intensive. We use an

approximation scheme to generate randomized GWAS

data by modeling the LD structure in the genome with

multivariate normal (MVN) distributions.16 We correct

for multiple hypothesis testing by using the standard Ben-

jamini-Hochberg procedure.28

It is important to emphasize the use of SNPs that fail to

reach traditional thresholds for genome-wide statistical

significance. For both gene expression and phenotypic

traits, recent studies suggest that a large number of loci

may have small effects and fall below the statistical

threshold.8,18 Rather than excluding modest GWAS and

eQTL associations up front, our statistical method takes

them into account and relies on the unlikely occurrence

of chance overlap to assign strong significance at the

gene level. For example, consider a hypothetical gene
erican Journal of Human Genetics 92, 667–680, May 2, 2013 671



Figure 2. Quantile-Quantile Plots of the
p Values at the Log. Scale of All Genes
Calculated by Sherlock
(A) Analysis of GWAS data of Crohn dis-
ease with the eQTL of lymphoblast B cells.
(B) Analysis of T2D GWAS data with the
liver eQTL.
with four independent eSNPs, each having a p value of

0.001 in the GWAS of a disease. Individually, these SNPs

are far from achieving genome-wide significance. Howev-

er, the chance that all four eSNPs achieve such p values

in GWAS is extremely low: 0.0014 ¼ 10�12. Hence, by

combining multiple weak signals, it is possible to achieve

strong statistical confidence.

Overview of Experiments

In each experiment, a GWAS data set (summary statistics or

p values) of some trait is provided and the program runs

the analysis against eQTL data of a relevant tissue in unre-

lated subjects. For all experiments, the program uses a

default set of parameters. For each gene, a LBF score and

its p value based on simulation are computed. The distribu-

tion of the p values of all genes is analyzed to determine

the false discovery rate (FDR) of the predictions. For both

Crohn disease and type 2 diabetes, we reported statistically

significant findings. We further assessed the predictions by

a combination of literature search, replication with inde-

pendent GWAS, and analysis of additional genomic data

sets.

Application to Crohn Disease

Our first experiment is on a GWAS meta-analysis of Crohn

disease (3,230 cases and 4,829 controls)29 uses the eQTL

data from lymphoblast B cells (LBL).13 Crohn disease is

an autoimmune disease of the intestines, one of twomajor

forms of inflammatory bowel disease (IBD). The LBL eQTL

(mainly cis eQTL) has been widely used to support the

analysis of GWAS data of immune-related diseases

including Crohn disease.9,11,30 The original GWAS data

suffers from modest population stratification (l ¼ 1.17),

so we applied the genomic control procedure before

further analysis.31 With only cis eSNPs, we identified a sin-

gle SNP, close to ORMDL3 (MIM 610075), that passes the

respective thresholds in both GWAS and eQTL, consistent

with the previous findings.29 In contrast, Sherlock identi-

fied a number of significant genes: the Q-Q plot of our pre-

dictions for all genes shows a clear excess of genes with

small p values (Figure 2A). To rule out p value inflation,

we created randomized GWAS data by randomly assigning

individuals from the 1000 Genomes Project to ‘‘case’’ and
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‘‘control’’ groups.32 We then per-

formed the same analysis on this ran-

domized data with the real LBL eQTL

data set. The p values from this exper-

iment closely follow the uniform dis-
tribution, suggesting that our test is well calibrated

(Figure S1 available online).

At p < 10�4 (the FDR at this p value threshold is 0.09),

we predicted ten genes (Table 1). Three of the ten, PTGER4

(MIM 601586), ORMDL3, and SLC22A5 (MIM 603377),

were reported in the original GWAS paper and supported

by additional studies.29,33 Below we discuss the remaining

genes and additional analyses. Except for UBE2L3 (MIM

603721), which is supported by a combination of cis

and trans eSNPs, all the remaining genes are supported

only by trans-acting SNPs (Table 2, full results in

Table S1). Importantly, most of these supporting SNPs

have moderate p values in both eQTL and GWAS data

and therefore are generally ignored in the traditional

GWAS analyses.

Notably, the genetic and experimental evidence strongly

suggest possible roles for UBE2L3 and EFS (MIM 609906) in

Crohn disease.UBE2L3was associated with several autoim-

mune diseases, including systemic lupus erythematosus

(MIM 152700), celiac disease (MIM 212750), and rheuma-

toid arthritis (MIM 180300).34 Because autoimmune

diseases often share genetic risk loci,35 the combined evi-

dence supports the role of UBE2L3 in Crohn disease. EFS

has not been associated with autoimmune diseases in pre-

vious GWASs. However, in mouse studies, Efs overexpres-

sion was shown to inhibit T lymphocyte development36

and Efs knockout mice exhibit exaggerated T-cell-mediated

immune responses.37 Remarkably, the knockout mice

develop tissue-specific inflammatory lesions in their small

intestine, a pattern very similar to Crohn disease.37 Addi-

tionally, the target of EFS, the kinase FYN (MIM 137025),

is marginally significant (p ¼ 9.6 3 10�4, FDR < 0.25).

Together, this evidence suggests that EFS is a strong candi-

date gene for Crohn disease.

Two other genes in our list have well-established im-

mune functions and are possibly related to autoimmune

diseases and IBD. IK (MIM 600549) encodes a cytokine

that downregulates class II MHC antigen whose aberrant

expression has been associated with autoimmune dis-

eases.38 LYNX1 (MIM 606110) encodes a signaling peptide

of nicotinic acetylcholine receptors (nAChR).39 The non-

neuronal cholinergic system plays an important function

in regulating the development and activation of T and B



Table 1. Top Predicted Genes for Crohn Disease

Gene LBF p Value GWAS Hit Supporting Evidence p Value (Rep.)

UBE2L3 7.78 2.2 3 10�6 no associated with celiac disease, rheumatoid arthritis, and lupus34 4.2 3 10�6

ORMDL3 5.72 3.3 3 10�5 yes associated with Crohn disease and ulcerative colitis29,33 1.0 3 10�6

PTGER4 5.57 3.7 3 10�5 yes associated with Crohn disease33 3.4 3 10�5

IK 5.43 4.3 3 10�5 no regulates class II MHC antigen, which is associated with
autoimmune diseases38

0.75

LYNX1 5.34 4.8 3 10�5 no agonist of nonneuronal nAchR pathway, which may be
important for IBD39–41

0.014

NUDT4 5.32 4.8 3 10�5 no NA 3.4 3 10�5

EFS 5.23 6.1 3 10�5 no knockout mice exhibit symptoms similar to Crohn disease36,37 0.039

FAM96A 5.19 6.3 3 10�5 no NA 4.2 3 10�6

SLC22A5 5.17 6.3 3 10�5 yes associated with Crohn disease29,33 3.8 3 10�5

ANAPC2 4.87 9.2 3 10�5 no NA 0.0006

The LBF column is the logarithm of the Bayes Factor for the genes. The p values refer to the p values of LBFs, calculated from simulations. The ‘‘GWAS hit’’ column
shows whether a gene has been implicated as a candidate gene in previous GWASs. The last column shows the p value of the genes using an independent GWAS
data set of Crohn disease (replication). See the text for details of the supporting evidence.
cells.40 Smoking (nicotine) affects both types of IBD, and it

was recently found that these effects are mediated through

alpha7 nAChR,40 a target of LYNX1.39 Furthermore, ago-

nists of alpha7 nAChR affect the disease condition in

experimental colitis (a model of IBD) in mice.41 This evi-

dence suggests a likely role for LYNX1 in Crohn disease

through its effect on nAChR-mediated signaling pathway.

Next, we performed a replication experiment with an in-

dependent GWAS data set for Crohn disease19 and the

same eQTL data set. All genes, except IK, are replicated at

p < 0.05 (Table 1). The extent of replication is highly sig-

nificant (p ¼ 1.8 3 10�11, binomial test).

In summary, of the ten genes predicted by our method at

FDR < 0.1, six are known to be associated with Crohn dis-

ease and/or IBD or are strong candidates supported by both

independent discoveries from literature and replication

(UBE2L3, ORMDL3, PTGER4, LYNX1, EFS, and SLC22A5).

One concern is that the genes in the lymphoblasts eQTL

data are enriched with immune-related functions,11 and

thus even a randomly chosen set will hit some plausible

candidate genes. We performed some estimation and a

computational experiment to rule out this possibility. In

this eQTL data set, a total of ~9,200 genes have at least

one putative eSNP (defined by the same thresholds used

for the predicted genes). Assuming there are 1,000 risk

genes of Crohn disease (probably an overestimate), and

even if they all belong to this list of 9,200 genes, the

chance that a randomly chosen gene is associated with

Crohn disease is only 1,000/9,200 ¼ 11%, a ratio far below

that of our predictions (6 out of 10, p ¼ 2.5 3 10�4, bino-

mial test). Next we randomly sampled two dozen genes

from the set of ~9,200 genes and manually judged their

relevance to Crohn disease by searching literature in the

same way as we did for our candidate genes (Table S2).

Only three genes were found to have some immune func-
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tion, but none specifically related to IBD, compared with

seven immunity-related genes (the six candidates plus IK)

out of ten in our predictions (p ¼ 0.002, Fisher’s exact

test). Despite some limitations (e.g., manual judgment is

inherently unreliable), the very conservative nature of

our estimation and the strong statistical trends in both an-

alyses suggest that the eQTL data alone cannot explain the

results.

Finally, we explore gene networks underlying Crohn dis-

ease by using information from trans eSNPs that might

reveal potential upstream regulatory genes. We found an

interesting group of genes with moderate statistical sup-

port (nominal p values from .001 to .003; Table S3) that

are associated with the same two independent SNPs in

trans (Figure S2). Most of these genes are related to some as-

pects of autoimmunity (Table S3). Because they are all

affected by the same two eSNPs, this group may be

involved in the same molecular pathway affecting Crohn

disease. Interestingly, one of the two SNPs, rs10248053,

is located inside RELN (MIM 600514), which is associated

with the age of onset of multiple sclerosis (MIM 126200),

an autoimmune disease,42 and may also be involved in a

subtype of T cell leukemia.43

Application to Type 2 Diabetes

We next performed an experiment on the GWAS of T2D

from DIAGRAM (4,549 cases and 5,579 controls)44 by us-

ing liver eQTL.45 Previous studies that used the liver data

have provided insights on T2D, though only cis eSNPs

were utilized.20,45 The p values of the vast majority of

the genes closely track the uniform distribution, with

about a dozen genes significantly above the diagonal

line in the Q-Q plot (Figure 2B). The analysis using

permuted GWAS data confirmed the absence of p value

inflation (Figure S1). At p < 10�4 (FDR 0.3 at this p value
erican Journal of Human Genetics 92, 667–680, May 2, 2013 673



Table 2. Supporting SNPs for Some of the Predicted Genes of Crohn Disease

Gene SNP SNP Location Proximity eQTL p Value GWAS p Value LBF

UBE2L3 (7) rs2283790 chr22: 20,286,653 cis 6.0 3 10�6 8.9 3 10�6 6.7

rs7735799 chr5: 84,248,096 trans 3.0 3 10�6 7.2 3 10�4 1.3

EFS (16) rs2154490 chr21: 29,837,833 trans 6.0 3 10�6 3.5 3 10�4 2.6

rs8044972 chr16: 75,957,583 trans 1.0 3 10�6 2.0 3 10�2 1.9

rs6843282 chr4: 32,433,817 trans 9.0 3 10�6 2.0 3 10�3 1.4

rs2210054 chr14: 33,091,890 trans 1.0 3 10�5 5.9 3 10�3 0.8

LYNX1 (5) rs921719 chr8: 126,615,379 trans 1.0 3 10�5 7.8 3 10�5 3.7

rs11205709 chr1: 50,581,881 trans 1.0 3 10�5 2.8 3 10�3 1.1

rs1998564 chr13: 107,034,232 trans 1.0 3 10�6 1.2 3 10�2 0.7

A SNP is called in cis of a gene if it is located within 1 Mb of the transcription start site of this gene. Each SNP in the table actually represents a block of adjacent
eSNPs (chosen to be the one with the highest LBF). The number in parentheses in the Gene column shows the total number of putative eSNP blocks (defined as
p < 10�5 in the eQTL data) of that gene. The LBF column shows the LBF of individual SNP (see Material and Methods). Only SNPs with LBF greater than 0.5 are
shown.
cutoff), we predicted four genes (Tables 3 and 4). Two of

the four, PURB (MIM 608887) and GNB5 (MIM 604447),

are supported only by trans-acting SNPs. Similar to Crohn

disease, most of the supporting SNPs have only moderate

statistical significance in both the GWAS and eQTL data

sets.

We found literature evidence supporting three of our pre-

dicted genes. TSPAN8 (MIM 600769) is reported in the orig-

inal DIAGRAM study and replicated by subsequent

GWASs.44 In an experimental mouse study, haploinsuffi-

ciency (deletionof a single copy) ofGnb5 (themousehomo-

log of GNB5) caused late-onset obesity, insulin resistance,

and liver steatosis on a normal diet, phenotypes strongly

resembling human metabolic syndrome and T2D.46 In

addition, a closely related gene, GNB3 (MIM 139130), is

shown to be associated with obesity, insulin resistance,

and glucose tolerance in several studies.47 A SNP close to

JAZF1 (MIM 606246) was associated with T2D,44,48 and

deletion of Jazf1 in mice leads to increased fat mass and in-

sulin resistance.49 Interestingly, the SNP rs849134 (close to

the supporting cis eSNP rs1635852 of JAZF1, Table 4)was re-

ported to be strongly associated with both T2D and the

expression of JAZF1 in adipose tissue in the DIAGRAM

study.48 The replication of this finding in liver

(rs1635852, associated with T2D and liver expression of

JAZF1) along with the additional trans eSNP from our anal-

ysis provides independent evidence of JAZF1.

We assembled genomic data from a number of mouse

studies to assess the putative role of PURB in T2D. The

expression of Purb in multiple tissues (liver, adipose, mus-

cle, and islet) has been previously found to influence a

number of metabolic phenotypes including fat mass, fat

to body weight ratio, glucose level, insulin level, glucose

to insulin ratio, and oral glucose tolerance test in sixmouse

crosses via a genetic causality test (FDR 10%).12,24,25,50 The

fact that this relationship was consistently discovered in

different tissues and in different genetic backgrounds pro-
674 The American Journal of Human Genetics 92, 667–680, May 2, 2
vides good evidence of a putative role of PURB in T2D. We

also surveyed genes coexpressed with PURB by using previ-

ously described tissue-specific coexpression networks con-

structed from expression data in human and various

mouse crosses (see Material and Methods). Genes within

a given network module have been found to share similar

biological functions. The top gene coexpressed with PURB

is SERPINF1 (MIM 172860, appeared in >30% of the 128

coexpression modules containing PURB), a strong candi-

date gene for T2D.51,52 The strong coexpression between

the two genes thus lends further support to PURB as a

possible T2D-associated gene.

We also analyzed the supporting trans eSNPs of the pre-

dicted genes of T2D. One supporting eSNP of PURB,

rs319598 (Table 4), is located in the promoter of PCBD2

(MIM 609836), which is a cofactor of HNF1A (MIM

142410), a liver-specific transcription factor. Mutations of

HNF1A are responsible for 30%–70% of the cases of matu-

rity-onset diabetes of the young (MODY [MIM 606391]), a

rare form of T2D.53 In another example, we focused on

NDRG2 (MIM 605272), a gene slightly below our threshold

(p¼ 3.0310�4, ranked sixth, not shown inTable 3) but bio-

logically interesting because of its role in b cell protection.54

One of the two supporting eSNPs ofNDRG2, rs7334, is close

to the 30 end of EGFR (MIM 131550). The EGFR signaling

pathway plays a key role in pancreatic beta cell develop-

ment: even a modest attenuation leads to a severe defect

in b cells, causing diabetes.55 These analyses thus further

support PURB andNDRG2 as T2D candidate genes and sug-

gest the possible mechanism of their actions, by linking

them to the well-established diabetes pathways.
Discussion

We have proposed a general strategy for genetic mapping

that integrates information from GWAS with eQTL data.
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Table 3. Top Predicted Genes for Type 2 Diabetes

Gene LBF p Value GWAS Hit Supporting Evidence

TSPAN8 6.08 9.4 3 10�6 yes associated with T2D
in GWAS48

PURB 6.07 9.4 3 10�6 no expression is causal to
T2D-related phenotypes
(see text)

GNB5 4.97 8.9 3 10�5 no deletion leads to T2D
symptoms46,47

JAZF1 4.93 9.5 3 10�5 yes deletion leads to
T2D symptoms;49

GWAS association48

The LBF column is the logarithm of the Bayes Factor for the genes. The p values
refer to the p values of LBFs, calculated from simulations. The ‘‘GWAS Hit’’ col-
umn shows whether a gene has been implicated as a candidate gene in previ-
ous GWAS. See the text for details of the supporting evidence.
Instead of testing individual variants close to a gene, we

pool the information in all variants, mostly in trans, that

perturb the expression of the gene to infer its role in a com-

plex disease. The major difficulties for utilizing trans vari-

ants to date are their relatively small effects and the pleio-

tropicity of their influences. We overcome these by

utilizing the statistical pattern of multiple trans variants,

much like a detective using a fingerprint to identify a sus-

pect. Our experiments in Crohn disease and T2D demon-

strate the benefits of this approach. Our predictions are

often supported by moderate SNPs acting in trans (Tables

2 and 4) and thus are not possible to identify by the tradi-

tional methods. We believe this general framework signif-

icantly extends existing approaches to genetic mapping

of complex phenotypes. Both theoretical considerations

(complexity of gene regulatory networks) and empirical

studies support the importance of trans variants affecting

gene expression traits. By accessing this large amount of

so-far unutilized information, our method could greatly

expand our ability to derive new insights from association

studies.

Application of our method to two complex diseases led

to findings that are supported by multiple lines of evi-

dence. First, for both Crohn disease and T2D, there are

clear enrichments of candidate genes from the overall p

value distributions (Figure 2). Second, in the study of

Crohn disease, we show that all but one of ten predicted

genes are replicated in an independent GWAS data set.

Third, among our predictions not implicated in human

studies before, genetic manipulations of Efs and Gnb5 in

experimental mice lead to phenotypes highly consistent

with the roles in Crohn disease and T2D, respectively.

The collective evidence thus supports our approach as a

promising strategy to extract insights from GWASs.

From a population genetic perspective, our strategy

provides a significant addition to existing paradigms for

genetic mapping. Selection pressure generally keeps prox-

imal, large-effect variants at very low frequencies in the

population.56 This largely explains the observation that
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most common variants identified in GWASs have small ef-

fect sizes.57 Major efforts are underway to identify rare var-

iants with larger effects by using exome or whole-genome

sequencing. Although this has led to a number of discov-

eries forMendelian diseases, its success in complex diseases

is modest,58 presumably reflecting large sample size re-

quirements for rare variants. Our strategy is based on the

notion that distal variations that only weakly perturb the

expression of a gene may survive at significant frequencies

in the population because of weaker selection and that

there could be many such variations across the genome.

Although such weak genetic perturbations may manifest

as only modest associations in both the eQTL analysis

and the GWAS of a disease, the genes they perturb can

play an important role in the disease. In our analysis,

although the supporting SNPs of EFS and GNB5 are all in

trans with modest associations, genetically manipulated

mice exhibit severe abnormalities resembling Crohn dis-

ease and T2D, respectively.37,46 Thus our strategy of

genetic mapping is capable of finding hidden gene-disease

associations by leveraging the collective signals of multiple

modest perturbations across the genome.

Our work laid down a general framework for using data

from association studies of quantitative molecular traits

to interpret GWASs of complex diseases. Many eQTL

studies in human have been performed,9,30 but the vast

amount of information in the trans eQTL remains unuti-

lized. There are also efforts on mapping QTL of other

molecular traits, such as metabolites59 and epigenetic

modifications.60 Misregulation in these aspects could be

important drivers of complex diseases.61 Our method is

readily generalizable to these data sets, by defining the ge-

netic signatures of molecular traits and by matching these

signatures to that of the disease.

Our method employs a rigorous statistical framework,

leading to major advantages over simple, heuristic

methods (e.g., count the number of SNPs shared by the

expression and disease traits, defined via some p value

threshold). First, both strong and weak loci are taken into

account with proper weighting. We incorporate all GWAS

associations into the analysis without relying on arbitrary

significance thresholds. This is crucial because most of the

supporting SNPs in our findings are moderately associated

with the expression trait and phenotype but fail to reach

genome-wide significance threshold (Tables 2 and 4). Sec-

ond, our method in general does not permit individual

SNPs to dominate the results (see ‘‘Model Analysis’’ in Ma-

terial and Methods), a common issue when testing associ-

ation of a set of SNPs in GWASs.62 Third, the inherent

asymmetry of the relationship between the gene and the

disease is reflected in our model. A SNP associated with

gene expression but not the disease is used as evidence

against the gene, and a SNP associated with the disease

but not gene expression is treated as noninformative.

An important decision to make when using our tool is

the selection of phenotype-appropriate eQTL data sets.

For some common diseases, it may be straightforward to
erican Journal of Human Genetics 92, 667–680, May 2, 2013 675



Table 4. Supporting SNPs for the Predicted Genes for Type 2 Diabetes

Gene SNP SNP Location Proximity eQTL p Value GWAS p Value LBF

TSPAN8 (5) rs7298255 chr12: 69,714,336 cis 2.7 3 10�9 1.3 3 10�6 6.4

PURB (14) rs319598 chr5: 134,268,134 trans 4.5 3 10�6 3.9 3 10�5 4.9

rs11022347 chr11: 12,391,558 trans 7.3 3 10�6 2.2 3 10�3 1.3

rs2028967 chr2: 142,990,138 trans 6.4 3 10�6 5.0 3 10�3 0.9

GNB5 (7) rs2021910 chr6: 85,141,735 trans 1.8 3 10�6 3.0 3 10�4 3.8

rs13105547 chr4: 52,974,359 trans 5.5 3 10�7 2.1 3 10�2 1.0

JAZF1 (10) rs1635852 chr7: 28,155,936 cis 3.6 3 10�6 2.2 3 10�5 4.8

rs885720 chr12: 12,139,366 trans 2.1 3 10�6 2.7 3 10�2 0.6

A SNP is called in cis of a gene if it is located within 1 Mb of the transcription start site of this gene. Each SNP in the table actually represents a block of adjacent
eSNPs (chosen to be the one with the highest LBF). The number in parentheses in the Gene column shows the total number of putative eSNP blocks (defined as
p < 10�5 in the eQTL data) of that gene. The LBF column shows the LBF of individual SNP (see Material and Methods). Only SNPs with LBF greater than 0.5 are
shown.
choose relevant disease tissues, e.g., brain for psychiatric

diseases. The results of our method also provide a quantita-

tive measure of success (the number of significant genes

above a certain FDR) and hence an indication of how infor-

mative a particular eQTL data set is. In general, we believe

that there is probably not a single ‘‘correct’’ tissue; rather,

multiple tissues may be informative to different degrees.

For instance, it was reported recently that skin, adipose,

and blood cells share a substantial fraction of eQTL.63

Thus, it is possible that skin or blood eQTLmay provide in-

formation for metabolic diseases. An important future

challenge is to characterize the similarity and difference

of eQTL across tissues and to develop an analytic frame-

work to integrate information from multiple tissues.

Schadt et al. pioneered the use of eQTL for understand-

ing genetics of complex traits.12,61 In experimental ani-

mals, it is possible to perform genotyping, expression

profiling, and phenotyping on the same individuals, al-

lowing researchers to analyze patterns of correlation and

dependency among variables to infer causal relation-

ships.12 It is difficult, however, to apply this strategy to

human studies. Expression profiling of disease-related tis-

sues in human subjects is generally costly and often not

feasible. Another difficulty is the challenge of mapping

trans eQTL in human;9 as a result, most of the existing

studies utilizing human eQTL data focus on associations

in cis,9,11 with only a few exceptions.64,65 With our

approach, we have circumvented these problems and

demonstrated that, even without all three types of data

in the same samples, it is possible to infer associations be-

tween expression traits and diseases.

In our experiments with T2D, unlike Crohn disease, we

predicted a small number of genes at a relatively high error

rate (four genes at FDR < 0.3). Several factors might

contribute to this lower level of statistical evidence: (1)

our T2D analysis is based on liver eQTL data, although

more relevant tissues for T2D are probably adipose and

pancreatic tissues; and (2) we were unable to perform

imputation because of lack of genotype data, thus reducing
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the overlap between eQTL and GWAS data sets and the po-

wer of ourmethod.We believe the results still provide valu-

able information from existing data. The predictions create

a short list of candidate genes; when combining with addi-

tional evidence, some interesting hypotheses may emerge.

One of our predictions, PURB, for instance, is supported by

multiple human and mouse genomic data sets, and there-

fore is an interesting candidate for follow-up analysis.

Although current GWASs typically use only common

SNPs measured by array-based genotyping platforms,

next-generation sequencing (NGS) technologies provide

a window into other types of genetic variation, including

rare SNPs, copy-number variants, and indels. Our strategy

of matching genetic signatures is based on very general

principles and therefore can be easily adapted to these

new forms of genetic variations.
Appendix A: The Null and Alternative Distributions

of the Association Statistics of SNPs

For a given SNP, let T be its association test statistic (p value

can be converted to T, assuming a standard normal distri-

bution) for a trait, either an expression trait or phenotype.

We use M to denote the model: M ¼ 0 corresponds to the

null model of no association between the SNP and the

trait, and M ¼ 1 corresponds to the alternative model.

We need to compute the probability distribution,

P(T j M). In the null model, typically, P(T j M ¼ 0) follows

the standard normal distribution. In the alternative model,

the distribution P(T j M ¼ 1) depends on the statistical test

throughwhich T is derived and the effect size of the SNP, as

explained below.
Binary Trait

We assume the Armitage trend test was used to derive the

test statistics. We follow the notations in Slager and

Schaid:66 for a given SNP, there are two alleles, A for the

high-risk allele and a for the other. The frequency of the
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ith genotype (i ¼ 0,1,2 is the number of A alleles) in cases is

pi, and its frequency in controls is qi. The number of case

and control individuals with each genotype are shown in

Table A1.
Table A1. The Number of Individuals with Given Genotypes

Genotype aa aA AA Total

Cases r0 r1 r2 R

Controls s0 s1 s2 S

Total n0 n1 n2 N
We define a variable xi ¼ i, the number of A alleles in a

genotype, the Armitage trend test can be written as

T ¼ U=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðUÞp

, where

U ¼
X
i

xi

�
S

N
ri � R

N
si

�
: (Equation A1)

Under the null hypothesis of no association, the mean of

U(m0) is 0 and its variance is given by66

s2
0 ¼ Nfð1� fÞ

"X
i

x2i qi �
 X

i

xiqi

!2#
; (Equation A2)

where f ¼ R/N is the fraction of cases in the sample. Based

on the central limit theorem, the asymptotic distribution,

T ¼ U=s0 � Nð0;1Þ.
Under the alternative hypothesis of association, the

mean and variance of U are given by66

m1 ¼ Nfð1� fÞ
X
i

xi
�
pi � qi

�
(Equation A3)

s2
1 ¼ Nfð1� fÞ2

"X
i

x2i pi �
 X

i

xipi

!2#
þNf2ð1� fÞ

3

"X
i

x2i qi �
 X

i

xiqi

!2#
: (Equation A4)

Thus, T follows normal distribution:

T ¼ U

s0

� N

�
m1

s0

;
s2
1

s2
0

�
: (Equation A5)

The parameters pi and qi are unknown, but they are

related to the effect size and allele frequency of the SNP

in the population. For the ith genotype, let fi be its pene-

trance (the probability of disease given the genotype)

and gi be its frequency in the population. Then pi and qi
are related to fi and gi through the Bayes theorem:

pi ¼ figiP
i

figi
; qi ¼

�
1� fi

�
giP

i

�
1� fi

�
gi
: (Equation A6)

The sum Sifigi is also called disease prevalence, K. Assuming

Hardy-Weinberg equilibrium, the genotype frequencies are

simply related to p, the frequency of the risk allele
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(assumed known, e.g., from HapMap). Suppose the effect

size (the logarithm of the odds ratio of the risk allele) is

b, the relative risk is then approximately g ¼ eb. Assuming

the multiplicative genetic model, we have f1 ¼ gf0 and f2 ¼
g2f0. With the fact K ¼ Sifigi, we could solve f0:

f0 ¼ K

½gpþ ð1� pÞ�2 (Equation A7)

In summary, given K and p, pi and qi can be expressed as

functions of b. Plug in pi and qi to equations of m1, s1, we

can write m1, s1 as functions of b as well: m1(b; K, p) and

s1(b; K, p). Because b is unknown, we assume a prior distri-

bution of b: bjM ¼ 1 � Nð0;s2
aÞ and integrate out b in the

distribution P(T j M ¼ 1):

Pðt jM ¼ 1Þ ¼
Z

Pðt j bÞPðb jM ¼ 1Þdb

¼
Z

N

�
t jm1ðbÞ

s0

;
s2
1ðbÞ
s0

�
N
�
b j0; s2

a

�
db;

(Equation A8)

WhereN(tj.) is the p.d.f. of the normal distribution. A com-

mon choice of the prior distribution is s2
a ¼ 0:2.17

Quantitative Trait

For an association study of a quantitative trait, we assume a

z-test of the linear regression coefficient is used. Specif-

ically, we have the following regression:

yi ¼ mþ bxi þ εi; (Equation A9)

where xi and yi are the genotype and phenotype of the ith

subject in the sample, respectively, and εi ~ N(0,s2) is the

error term. The statistic test of whether b ¼ 0 is: T ¼ b1/

s(b1), where b1 is the MLE of b. The variance of b1 is given

by

s2ðb1Þ ¼ s2P ðxi � xÞ2 ¼ s2

2Npð1� pÞ; (Equation A10)

where N is sample size and p is the allele frequency

(assuming HWE). T follows standard normal distribution

under M ¼ 0: T ¼ b1/s(b1) ~ N(0,1). In this calculation,

we assume that s2 is known. If this is not true, we need

to replace s2 with its MLE, s2 in T. However, with large

sample size (which is often the case in large GWASs), the

two are close, so for simplicity, we will use s2 instead. Un-

derM¼ 1, we assume the prior distribution b � Nð0;s2
as

2Þ,
according to Servin and Stephens,14 where sa reflects the

typical effect size compared with the standard deviation

of the quantitative trait. With the distribution b1 ~

N(b,s2(b1)), we have

Pðb1 jM ¼ 1Þ ¼
Z

Pðb1 j bÞPðb jM ¼ 1Þdb

¼
Z

N
�
b1 j b; s2ðb1Þ

�
N
�
b j 0; s2

as
2
�
db

(Equation A11)
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It is easy to show that b1 underM ¼ 1 follows the normal

distribution b1 � Nð0;s2ðb1Þ þ s2
as

2Þ, thus

T ¼ b1
sðb1Þ � N

�
0;1þ 2Npð1� pÞs2

a

�
: (Equation A12)

The hyperparameter of the prior distribution, sa, is fixed

at 0.5 in our experiments, based on the earlier study of

Bayesian association mapping of quantitative traits.14

Appendix B: Relating the Bayes Factors of Genes to

the SNP-Level Bayes Factors in eQTL and GWAS

Data

Under the null hypothesis of no gene-disease relationship

(Z ¼ 0), the eQTL and GWAS data are independent

(Figure 1D), and we thus have the model evidence of the

null hypothesis:

Pðx; y jH0Þ ¼
YN
i¼1

Pðxi jH0ÞP
�
yi jH0

� ¼YN
i¼1

f0ðxiÞg0
�
yi
�
;

(Equation A13)

where the two functions describe the probability of eQTL

and GWAS summary statistics, respectively:

f0ðxiÞ ¼ Pðxi jH0Þ ¼ ð1� aÞPðxi jUi ¼ 0Þ þ aPðxi jUi ¼ 1Þ
(Equation A14)

g0
�
yi
� ¼ P

�
yi jH0

� ¼ ð1� bÞP�yi jVi ¼ 0
�þ bP

�
yi jVi ¼ 1

�
:

(Equation A15)

Under the alternative hypothesis (Z ¼ 1), we plug in the

relevant terms to Equation 3:

P
�
xi; yi jH1

� ¼ ð1� aÞPðxi jUi ¼ 0Þg0
�
yi
�

þ aPðxi jUi ¼ 1ÞP�yi jVi ¼ 1
�
:

(Equation A16)

Divide the model evidence of H1 at the ith SNP over that

of H0, we have

Bi ¼
P
�
xi; yi jH1

�
P
�
xi; yi jH0

�
¼ ð1� aÞPðxi jUi ¼ 0Þg0

�
yi
�þ aPðxi jUi ¼ 1ÞP�yi jVi ¼ 1

�
f0ðxiÞg0

�
yi
� :

(Equation A17)

Eliminate the common terms in the numerator and the

denominator, and we have Equation 5 shown in the

main text. The gene level BF is simply the product of Bis.
Supplemental Data

Supplemental Data include two figures and three tables and can be

found with this article online at http://www.cell.com/AJHG/.
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